(35.175.212.130) 您好!臺灣時間:2021/05/18 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李嘯澐
研究生(外文):Xioa - Yun Li
論文名稱:以矽場效應電晶體作氨氣與醋酸氣體之定性與定量偵測
論文名稱(外文):Qualitative and quantitative detection of ammonia and acetic acid gases using silicon field effect transistors
指導教授:陳啟東陳啟東引用關係蔡麗珠蔡麗珠引用關係
指導教授(外文):Chii-Dong ChenLi-Chu Tsai
口試委員:陳生明陳逸聰陳啟東蔡麗珠
口試委員(外文):Shen-Ming ChenYit-Tsong ChenLi-Chu TsaiLi-Chu Tsai
口試日期:20160728
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:醋酸氣體、氨氣、定性、定量
外文關鍵詞:Acetic acid gasAmmonia gas Qualitative and quantitative analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來的研究指出場效電晶體作為氣體感測器之靈敏度極高,其中以矽薄膜場效電晶體的電性較為穩定,且合於現有之互補式金屬氧化物半導體(CMOS)製程,在製程上較為方便,更可以在其氧化層表面修飾化學分子以對偵測目標做專一性偵測,所以矽薄膜場效電晶體是一種良好的感測平台。
本論文中於矽薄膜場效電晶體(Si-FET)表面修飾 3-氨基丙三乙氧基矽烷(APTES)作為探針分子進行氣體偵測。因為矽薄膜的穩定與均勻性,使我們有機會對氣體濃度進行穩定的定性與定量。
本論文主要成果有三 : 1. 醋酸氣體使 Si-FET 電流上升,但氨氣使 Si-FET 電流下降,因此可以偵測並區此兩種氣體。針對待測氣體設計 不同探分子便可以提供選擇性。2. 以氨氣先將電晶體表面做飽和反應,並將此時Si-FET的訊號作為基準點。每次偵測醋酸後,於常溫下通入氮氣可以使醋酸脫離,並使訊號回到基準值,達成再現性。3. 通入醋酸時, Si-FET 的訊號隨時間變化速率與醋酸濃度有特定關係式,因此可由變化速率推得待側氣體的濃度。目前偵測醋酸的靈敏度可達到 34 ppb(mole比)。
In recent years, Many researches have demonstrated that field effect transistor (FET) as gas sensor had high sensitivity, in particular, the silicon FET has stable electric characteristics, and compatible with currently existed CMOS process , most of all, silicon FET oxide surface can be chemically modified with molecules to specifically detects targets ( biomolecules, gases, light…..etc.) So silicon FET can be used as a good detecting platform.
In this research, we had modified (3-Aminopropyl)triethoxysilane (APTES) on the silicon FET oxide surface to carry gas detection. Due to the stability and uniformity of silicon thin film, we had the chance to making quantitative and qualitative analysis for gas detection.

There are three main results in this research: first, acetic acid gas make the current of silicon FET rising, but ammonia gas makes the current of silicon FET declining, the selectivity of detection can be achieved by designing different probe molecule; second, before acetic gas detection, using ammonia to react with the oxide surface of silicon FET to saturation, then the signal produced by ammonia saturating reaction is used as the basic signal value, each time after acetic gas detection , nitrogen gas purging can make the signal back to the basic signal value, achieving the reproducibility; finally, during acetic gas detection, it has been discovered that there’s a specific mathematical relationship between the gas concentration and the rate of signal variation, thus we can determine gas concentration by the rate of signal variation. The sensitivity of acetic gas detection at present is up to 34 ppb (partial mole).
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
圖、表、式目錄 vii
一、緒論 1
二、文獻回顧
2-1. 矽場效應電晶體氣體感測器 3
2-2. 矽烷偶聯劑 15
2-3. 表面修飾驗證 18
2-4. 表面分子加電場 21
2-5. 交流電型矽場效電晶體感測平台 23
三、實驗部分
3-1.實驗藥品與器材 25
3-2. 電性設備 27
3-2.1晶片載具與加電場裝置 27
3-3. 氣態偵測系統 30
3-4. 實驗流程 34
四、結果與討論
4-1. 表面修飾驗證 41
4-2. 氣體偵測與定性 45
4-3. 表面分子加電場後氣體偵測 48
4-4. 氣體反應機制與偵測回復 50
4-5 . 氣體定量分析 56
五、結論 62
參考文獻 63
[1]Li, Yan, et al. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation. Journal of Electronic Materials 45.6 (2016): 3149-3156.
[2]Camon, H., et al. From Layout to System Simulation: An Example of an Oxygen Sensor. Proceedings of MSM (1998): 457-462
[3]Han, Chi-Hwan, et al. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sensors and Actuators B: Chemical 128.1 (2007): 320-325.
[4]Lee, J. H., et al. Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al/sub 2/O/sub 3/gate dielectric. Electron Devices Meeting, 2000. IEDM00. Technical Digest. International. IEEE(2000): 645-648
[5]Lu, Qiang, et al. Metal gate work function adjustment for future CMOS technology. VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium on. IEEE(2001): 45-46
[6]Filippini, D., et al. New NO 2 sensor based on Au gate field effect devices. Sensors and Actuators B: Chemical 78.1 (2001): 195-201.
[7]Wong, C. Y., et al. Doping of n/sup+/and p/sup+/polysilicon in a dual-gate CMOS process. Electron Devices Meeting, 1988. IEDM88. Technical Digest., International. IEEE(1988): 238-241
[8]Pantelides, Sokrates T., et al. Si/SiO2 and SiC/SiO2 interfaces for MOSFETs–challenges and advances. Materials science forum. Vol. 527(2006): 935-948
[9]Yang, Tao, et al. Fast and slow dynamic NBTI components in p-MOSFET with
SiON dielectric and their impact on device life-time and circuit application. VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on. IEEE(2005):
92-93
[10]Tran, Thien-Toan, and Ashok Mulchandani. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends in Analytical Chemistry (2015): 222-232
[11]Chao, T. S. Introduction to semiconductor manufacturing technology. (2001): 2-29
[12]Audesirk, Heather A., et al. Ordered Silicon Microwire Arrays Grown from Substrates Patterned Using Imprint Lithography and Electrodeposition. ACS applied materials & interfaces 7.3 (2015): 1396-1400.
[13]Patolsky, Fernando, and Charles M. Lieber. Nanowire nanosensors. Materials today 8.4 (2005): 20-28.
[14]Jariwala, Deep, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews 42.7 (2013): 2824-2860.
[15]Thiemann, Stefan, et al. High-mobility ZnO nanorod field-effect transistors by self-alignment and electrolyte-gating. ACS applied materials & interfaces 5.5 (2013): 1656-1662.
[16]Kim, Hyeong-Jin, et al. Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors. Nanotechnology 17.11 (2006): S327.
[17]Cui, Y.; Zhong, Z.H.; Wang, D.L.; Wang, W.U.; Lieber, C.M. High performance silicon nanowire field effect transistors. Nano Lett. (2003): 149–152.
[18]Cui, Y.; Duan, X.F.; Hu, J.T.; Lieber, C.M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B (2000): 104, 5213–5216.
[19]Mescher, M.; de Smet, L.C.P.M.; Sudholter, E.J.R.; Klootwijk, J.H. Robust fabrication method for silicon nanowire field effect transistors for sensing applications. J. Nanosci. Nanotechnol. (2013): 13, 5649–5653
[20]Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyrembak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy, T.M.; Reed, M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature (2007) 445, 519–522.
[21]Bashouti, M.Y.; Sardashti, K.; Schmitt, S.W.; Pietsch, M.; Ristein, J.; Haick, H.; Christiansen, S.H. Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology. Prog. Surf. Sci. (2013): 88, 39–60.
[22]Bunimovich, Y.L.; Shin, Y.S.; Yeo, W.; Amori, M.; Kwong, G.; Heath, J.R. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc.(2006): 128, 16323–16331.
[23]Tian, Ruhai, et al. Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab on a Chip 11.11 (2011): 1952-1961.
[24]Gao, Anran, et al. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano letters 12.10 (2012): 5262-5268.
[25]Lu, Na, et al. Label-Free and Rapid Electrical Detection of hTSH with CMOS-Compatible Silicon Nanowire Transistor Arrays. ACS applied materials & interfaces 6.22 (2014): 20378-20384.
[26]Feng, Ping, et al. Gas sensors based on semiconducting nanowire field-effect transistors. Sensors 14.9 (2014): 17406-17429.
[27]Moos, R.; Sahner, K.; Fleischer, M.; Ulrich, G.; Barsan, N.; Weimar, U. Soild state gas sensor research in Germany—A status report. Sensors (2009): 9, 4323–4365.
[28]Zhang, Y.; Kolmakov, A.; Chretien, S.; Metiu, H.; Moskovits, M. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. (2004): 4, 403–407.
[29]Mubeen, S.; Moskovits, M. Gate-tunable surface processes on a single-nanowire field-effect transistor. Adv. Mater. (2011): 23, 2306–2312.
[30]Fan, Zhiyong, and Jia G. Lu. Gate-refreshable nanowire chemical sensors. Applied Physics Letters 86.12 (2005): 123510.
[31]Feng, P., et al. Achieving fast oxygen response in individual ß-Ga 2 O 3 nanowires by ultraviolet illumination. Applied physics letters 89 (2006): 112114.
[32]Shaymurat, T.; Tang, Q.; Tong, Y.; Dong, L.; Liu, Y. Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub-ppm levels at room temperature. Adv. Mater. (2013): 25, 2269–2273
[33]Engel, Yoni, et al. Supersensitive detection of explosives by silicon nanowire arrays. Angewandte Chemie International Edition 49.38 (2010): 6830-6835.
[34]Clavaguera, Simon, et al. Sub‐ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field‐Effect Transistors. Angewandte Chemie International Edition 49.24 (2010): 4063-4066.
[35]Passi, Vikram, et al. Functionalization of silicon nanowires for specific sensing. ECS Transactions 35.5 (2011): 313-318.
[36]Paska, Yair, and Hossam Haick. Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. ACS applied materials & interfaces 4.5 (2012): 2604-2617.
[37]Wang, Bin, and Hossam Haick. Effect of chain length on the sensing of volatile organic compounds by means of silicon nanowires. ACS applied materials & interfaces 5.12 (2013): 5748-5756.
[38]Wang, Bin, and Hossam Haick. Effect of functional groups on the sensing properties of silicon nanowires toward volatile compounds. ACS applied materials & interfaces 5.6 (2013): 2289-2299.
[39]Shehada, Nisreen, et al. Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano letters15.2 (2014): 1288-1295.
[40]Plueddemann, Edwin P. Chemistry of silane coupling agents. Silane coupling agents. Springer US,(1991): 31-54.
[41]Gunda, Naga Siva Kumar, et al. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science305 (2014): 522-530.
[42]Zang, Pengyuan, Yuchen Liang, and Wenchuang Walter Hu. Improved Hydrolytic Stability and Repeatability: pH sensing with APTES-coated silicon nanowire bio-FETs. IEEE Nanotechnology Magazine 9.4 (2015): 19-28.
[43]Guhathakurta, Sanjukta, and Anuradha Subramanian. Effect of hydrofluoric acid in oxidizing acid mixtures on the hydroxylation of silicon surface. Journal of The Electrochemical Society 154.11 (2007): 136-146.
[44]Attri, Pankaj, Bharti Arora, and Eun Ha Choi. "Utility of plasma: a new road from physics to chemistry." RSC Advances 3.31 (2013): 12540-12567.
[45]Hermanson, Greg T. Bioconjugate techniques. Academic press, (2013): 535-548
[46]Rosenholm, Jessica, Cecilia Sahlgren, and Mika Lindén. Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. Journal of Materials Chemistry 20.14 (2010): 2707-2713.
[47]Zhang, Wei, et al. "Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects." Clinical Cancer Research 16.13 (2010): 3420-3430.
[48]Baumgärtel, Thomas, Christian von Borczyskowski, and Harald Graaf. Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes. Beilstein journal of nanotechnology 4.1 (2013): 218-226.
[49]Khoshhesab, Zahra Monsef. Reflectance IR spectroscopy. INTECH Open Access Publisher, (2012): 234-244
[50]Chu, Chia-Jung, et al. Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano letters 13.6 (2013): 2564-2569.
[51]Zhou, Mingfei, and Mohua Chen. Reactions of silicon dioxide with ammonia molecules: formation and characterization of the SiO2–NH3 complex and the
H2NSiOOH molecule. Chemical physics letters 349.1 (2001): 64-70.
[52] Bange, Jaspal P., Lalit S. Patil, and Dinesh Kumar Gautam. Growth and Characterization of SiO2 Films Deposited by Flame Hydrolysis Deposition System for Photonic Device Application. Progress In Electromagnetics Research M 3 (2008): 165-175.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文