|
[1]Li, Yan, et al. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation. Journal of Electronic Materials 45.6 (2016): 3149-3156. [2]Camon, H., et al. From Layout to System Simulation: An Example of an Oxygen Sensor. Proceedings of MSM (1998): 457-462 [3]Han, Chi-Hwan, et al. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sensors and Actuators B: Chemical 128.1 (2007): 320-325. [4]Lee, J. H., et al. Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al/sub 2/O/sub 3/gate dielectric. Electron Devices Meeting, 2000. IEDM00. Technical Digest. International. IEEE(2000): 645-648 [5]Lu, Qiang, et al. Metal gate work function adjustment for future CMOS technology. VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium on. IEEE(2001): 45-46 [6]Filippini, D., et al. New NO 2 sensor based on Au gate field effect devices. Sensors and Actuators B: Chemical 78.1 (2001): 195-201. [7]Wong, C. Y., et al. Doping of n/sup+/and p/sup+/polysilicon in a dual-gate CMOS process. Electron Devices Meeting, 1988. IEDM88. Technical Digest., International. IEEE(1988): 238-241 [8]Pantelides, Sokrates T., et al. Si/SiO2 and SiC/SiO2 interfaces for MOSFETs–challenges and advances. Materials science forum. Vol. 527(2006): 935-948 [9]Yang, Tao, et al. Fast and slow dynamic NBTI components in p-MOSFET with SiON dielectric and their impact on device life-time and circuit application. VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on. IEEE(2005): 92-93 [10]Tran, Thien-Toan, and Ashok Mulchandani. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends in Analytical Chemistry (2015): 222-232 [11]Chao, T. S. Introduction to semiconductor manufacturing technology. (2001): 2-29 [12]Audesirk, Heather A., et al. Ordered Silicon Microwire Arrays Grown from Substrates Patterned Using Imprint Lithography and Electrodeposition. ACS applied materials & interfaces 7.3 (2015): 1396-1400. [13]Patolsky, Fernando, and Charles M. Lieber. Nanowire nanosensors. Materials today 8.4 (2005): 20-28. [14]Jariwala, Deep, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews 42.7 (2013): 2824-2860. [15]Thiemann, Stefan, et al. High-mobility ZnO nanorod field-effect transistors by self-alignment and electrolyte-gating. ACS applied materials & interfaces 5.5 (2013): 1656-1662. [16]Kim, Hyeong-Jin, et al. Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors. Nanotechnology 17.11 (2006): S327. [17]Cui, Y.; Zhong, Z.H.; Wang, D.L.; Wang, W.U.; Lieber, C.M. High performance silicon nanowire field effect transistors. Nano Lett. (2003): 149–152. [18]Cui, Y.; Duan, X.F.; Hu, J.T.; Lieber, C.M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B (2000): 104, 5213–5216. [19]Mescher, M.; de Smet, L.C.P.M.; Sudholter, E.J.R.; Klootwijk, J.H. Robust fabrication method for silicon nanowire field effect transistors for sensing applications. J. Nanosci. Nanotechnol. (2013): 13, 5649–5653 [20]Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyrembak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy, T.M.; Reed, M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature (2007) 445, 519–522. [21]Bashouti, M.Y.; Sardashti, K.; Schmitt, S.W.; Pietsch, M.; Ristein, J.; Haick, H.; Christiansen, S.H. Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology. Prog. Surf. Sci. (2013): 88, 39–60. [22]Bunimovich, Y.L.; Shin, Y.S.; Yeo, W.; Amori, M.; Kwong, G.; Heath, J.R. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc.(2006): 128, 16323–16331. [23]Tian, Ruhai, et al. Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab on a Chip 11.11 (2011): 1952-1961. [24]Gao, Anran, et al. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano letters 12.10 (2012): 5262-5268. [25]Lu, Na, et al. Label-Free and Rapid Electrical Detection of hTSH with CMOS-Compatible Silicon Nanowire Transistor Arrays. ACS applied materials & interfaces 6.22 (2014): 20378-20384. [26]Feng, Ping, et al. Gas sensors based on semiconducting nanowire field-effect transistors. Sensors 14.9 (2014): 17406-17429. [27]Moos, R.; Sahner, K.; Fleischer, M.; Ulrich, G.; Barsan, N.; Weimar, U. Soild state gas sensor research in Germany—A status report. Sensors (2009): 9, 4323–4365. [28]Zhang, Y.; Kolmakov, A.; Chretien, S.; Metiu, H.; Moskovits, M. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. (2004): 4, 403–407. [29]Mubeen, S.; Moskovits, M. Gate-tunable surface processes on a single-nanowire field-effect transistor. Adv. Mater. (2011): 23, 2306–2312. [30]Fan, Zhiyong, and Jia G. Lu. Gate-refreshable nanowire chemical sensors. Applied Physics Letters 86.12 (2005): 123510. [31]Feng, P., et al. Achieving fast oxygen response in individual ß-Ga 2 O 3 nanowires by ultraviolet illumination. Applied physics letters 89 (2006): 112114. [32]Shaymurat, T.; Tang, Q.; Tong, Y.; Dong, L.; Liu, Y. Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub-ppm levels at room temperature. Adv. Mater. (2013): 25, 2269–2273 [33]Engel, Yoni, et al. Supersensitive detection of explosives by silicon nanowire arrays. Angewandte Chemie International Edition 49.38 (2010): 6830-6835. [34]Clavaguera, Simon, et al. Sub‐ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field‐Effect Transistors. Angewandte Chemie International Edition 49.24 (2010): 4063-4066. [35]Passi, Vikram, et al. Functionalization of silicon nanowires for specific sensing. ECS Transactions 35.5 (2011): 313-318. [36]Paska, Yair, and Hossam Haick. Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. ACS applied materials & interfaces 4.5 (2012): 2604-2617. [37]Wang, Bin, and Hossam Haick. Effect of chain length on the sensing of volatile organic compounds by means of silicon nanowires. ACS applied materials & interfaces 5.12 (2013): 5748-5756. [38]Wang, Bin, and Hossam Haick. Effect of functional groups on the sensing properties of silicon nanowires toward volatile compounds. ACS applied materials & interfaces 5.6 (2013): 2289-2299. [39]Shehada, Nisreen, et al. Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano letters15.2 (2014): 1288-1295. [40]Plueddemann, Edwin P. Chemistry of silane coupling agents. Silane coupling agents. Springer US,(1991): 31-54. [41]Gunda, Naga Siva Kumar, et al. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science305 (2014): 522-530. [42]Zang, Pengyuan, Yuchen Liang, and Wenchuang Walter Hu. Improved Hydrolytic Stability and Repeatability: pH sensing with APTES-coated silicon nanowire bio-FETs. IEEE Nanotechnology Magazine 9.4 (2015): 19-28. [43]Guhathakurta, Sanjukta, and Anuradha Subramanian. Effect of hydrofluoric acid in oxidizing acid mixtures on the hydroxylation of silicon surface. Journal of The Electrochemical Society 154.11 (2007): 136-146. [44]Attri, Pankaj, Bharti Arora, and Eun Ha Choi. "Utility of plasma: a new road from physics to chemistry." RSC Advances 3.31 (2013): 12540-12567. [45]Hermanson, Greg T. Bioconjugate techniques. Academic press, (2013): 535-548 [46]Rosenholm, Jessica, Cecilia Sahlgren, and Mika Lindén. Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. Journal of Materials Chemistry 20.14 (2010): 2707-2713. [47]Zhang, Wei, et al. "Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects." Clinical Cancer Research 16.13 (2010): 3420-3430. [48]Baumgärtel, Thomas, Christian von Borczyskowski, and Harald Graaf. Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes. Beilstein journal of nanotechnology 4.1 (2013): 218-226. [49]Khoshhesab, Zahra Monsef. Reflectance IR spectroscopy. INTECH Open Access Publisher, (2012): 234-244 [50]Chu, Chia-Jung, et al. Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano letters 13.6 (2013): 2564-2569. [51]Zhou, Mingfei, and Mohua Chen. Reactions of silicon dioxide with ammonia molecules: formation and characterization of the SiO2–NH3 complex and the H2NSiOOH molecule. Chemical physics letters 349.1 (2001): 64-70. [52] Bange, Jaspal P., Lalit S. Patil, and Dinesh Kumar Gautam. Growth and Characterization of SiO2 Films Deposited by Flame Hydrolysis Deposition System for Photonic Device Application. Progress In Electromagnetics Research M 3 (2008): 165-175.
|