(35.175.212.130) 您好!臺灣時間:2021/05/18 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈思伶
研究生(外文):Shen Ssu Ling
論文名稱:金/氧化鋅奈米聚集體複合結構的製備與抗菌活性研究
論文名稱(外文):Decoration of ZnO nanostructures with Au nanoparticles for antibacterial applications under visible light
指導教授:余琬琴
指導教授(外文):Wan-Chin Yu
口試委員:張瑞豐蘇昭瑾
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:抗菌枯草桿菌大腸桿菌奈米氧化鋅
外文關鍵詞:antibacterialBacillus subtilisEscherichia coliAu nanoparticleZnO nanostructures
相關次數:
  • 被引用被引用:1
  • 點閱點閱:62
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討氧化鋅聚集體與金/氧化鋅奈米複合結構,在室內可見光源下的抗菌特性。首先以環境友善的水溶液法,利用硝酸鋅與氫氧化鈉的水溶液於80°C下反應,合成兩種結構不同的氧化鋅奈米聚集體,並以孔洞擴散法(agar-well diffusion method) 評估奈米聚集體對大腸桿菌和枯草桿菌的抗菌效果。結果顯示,抑菌圈的尺寸隨奈米氧化鋅濃度的上升而增加,而且相較於市售奈米氧化鋅顆粒及奈米花狀聚集體,橄欖球狀聚集體產生較大的抑菌圈,顯示後者有較高的抗菌活性。此外,大腸桿菌的抑菌圈並不明顯,顯示大腸桿菌對氧化鋅奈米聚集體有較高的耐受度。為了增加抗菌效果,續以檸檬酸還原法於奈米橄欖球狀聚集體上生長奈米金,並利用液體培養生長曲線及殺菌曲線測試其抗菌效果。實驗結果顯示,含有奈米金的複合結構具有較佳的抗菌效果,顯示沉積奈米金於聚集體上可提升其抗菌活性。
Two different shapes of zinc oxide nanocrystallite aggregates were synthesized using a green aqueous solution method, and their antibacterial properties were investigated under indoor visible light. The antibacterial activity of the nanocrystallite aggregates against Escherichia coli and Bacillus subtilis were first tested using the agar-well diffusion method. The size of the inhibition zone increased with the concentration of the nanocrystallite aggregates, and the olive-shaped aggregates showed larger inhibition zone than the flower-shaped aggregates and the commercial ZnO nanoparticles, indicating the olive-shaped aggregates possess higher antibacterial activity. In addition, the Gram negative E. coli appeared to be more resistant to the ZnO nanomaterials than the Gram positive B. subtilis, as the inhibition zones for E. coli were not obvious. To enhance the antibacterial efficacy of the olive-shaped aggregates, Au nanoparticles were deposited on the surface of the aggregates via the citrate reduction method. The presence of Au nanoparticles was confirmed by electron microscopy and x-ray diffraction. From the liquid culture tests, the olive-shaped aggregates exhibited strong bactericidal activity against both E. coli and B. subtilis, and the decoration of Au nanoparticles significantly enhanced the bactericidal activity of the olive-shaped aggregates.
摘 要 i
Abstract ii
誌 謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 4
2.1 半導體光催化原理 4
2.2氧化鋅的構造及特性 7
2.3氧化鋅應用 9
2.4 氧化鋅製備方法 10
2.4.1 化學氣相沉積法 (Chemical Vapor Deposition) 11
2.4.2 水熱法 (Hydrothermal Method) 11
2.4.3 電化學沉積法 (Electrodeposition) 12
2.4.4溶膠-凝膠法 (Sol-Gel Method) 13
2.5 影響抗菌的因素 13
2.5.1 不同形貌 13
2.5.2 貴金屬/氧化鋅複合材料 16
2.6 氧化鋅光降解微生物的種類 19
2.6.1 細菌(bacteria) 19
2.6.2 真菌 (fungi) 22
2.6.3 原生動物(protozoa) 23
2.6.4 藻類(algae) 24
2.6.5 病毒(virus) 25
2.7 氧化鋅抗菌 28
2.7.1氧化鋅抗菌測試菌株 28
2.7.1.1大腸桿菌(Escherichia coli) 28
2.7.1.2枯草桿菌(Bacillus subtilis) 29
2.7.2氧化鋅抗菌機制 30
2.7.3氧化鋅抗菌測試方法 35
2.7.4影響氧化鋅抗菌的因素 36
第三章 材料與方法 37
3.1 實驗藥品與材料 37
3.2 實驗儀器與測量設備 38
3.2.1實驗儀器 38
3.2.2測量設備及操作方式 39
3.3 實驗方法 41
3.3.1實驗架構 41
3.3.2氧化鋅聚集體製備 42
3.3.3菌種前培養 45
3.3.4抑菌圈測試(Agar-well diffussion method) 46
3.3.5抗菌生長曲線測試 46
3.3.6殺菌曲線測試 47
第四章 結果與討論 48
4.1 掃描式電子顯微鏡(SEM)測試 48
4.1.1不同形貌奈米氧化鋅 48
4.1.2奈米橄欖球狀氧化鋅還原金 50
4.2 穿透式電子顯微鏡(TEM)分析 54
4.3 光繞射儀(XRD)分析 57
4.4 抗菌實驗測試 58
4.4.1 抑菌圈測試 58
4.4.2 抗菌生長曲線測試 61
4.4.3 殺菌曲線測試 65
第五章 結論 68
參考文獻 70
[1]鍾楊聰,方繼,許元勳,陳啟楨,林建谷,林春福,巢佳莉,實用微生物學(修訂版),第七章,2002, 191-195頁。
[2]M. Ramani., S. Ponnusamy., C. Muthamizhchelvan. and E. Marsili., “Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity,” Colloids and Surfaces B:Biointerfaces, vol. 117, 2014, pp. 233-239.
[3]M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, J. Cullen, S. Krishnamurthy, and E. Marsili, "Morphology-directed synthesis of ZnO nanostrustures and their antibacterial activity," Colloids and Surfaces B: Biointerfaces, vol. 105, 2013, pp. 24-30.
[4]G. X. Tong, F. F. Du, Y. Liang, Q. Hu, R. N. Wu, J. G. Guan and X. Hu, "Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity, " Journal of Materials Chemistry B, vol. 1, 2013, pp. 454.
[5]W. He, H. Wu, W. G. Wamer, H. K. Kim, J. Zheng, H. Jia, Z. Zheng, and J. J. Yin, "Unraveling the Enhanced Photocatalytic Activity and Phototoxicity of ZnO/Metal Hybrid Nanostructures from Generation of Reactive Oxygen Species and Charge Carriers," ACS Applied Materials & Interfaces, vol. 6, 2014, pp. 15527-15535.
[6]W. Stumm., “Chemistry of the solid-water interface: processes at the mineral- water and particle-water interface in natural systems,” New York: John Wiley and Sons, vol. 347,1992
[7]游泊皓,鉑/二氧化鈦的製備與光催化反應從液相到氣相,碩士論文,國立臺北科技大學工程學院有機高分子研究所,台北,2004。
[8]H.R. Madan., S.C. Sharma, Udayabhanu., D. Suresh., Y.S. Vidya, H. Nagabhushana, H. Rajanaik, K.S. Anantharaju, S.C. Prashantha, and P. S. Maiya, “Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone : Their antibacterial, antioxidant, photoluminescent and photocatalytic properties,”Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 152, 2016, pp. 404-416.
[9]Y. Sun and J. Y. Cheng, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Germany: Wiley-VCH, 2009, pp. 1-2.
[10]M. K. Nazeeruddin, P. P’echy, and M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex”,Chemical Communications,vol. 18, 1997, pp. 1705-1706.
[11]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Sellon, G. Viscardi , P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, Journal of the American Chemical Society,vol. 127, 2005, pp. 16835-16847.
[12]Porter F., "Zinc Handbook: Properties, Processing, and Use in Design," CRC Press, 1991.
[13]Bouchez, Colette.,” The Lowdown on Mineral Makeup,” WebMD, 2009
[14]K. Y. Jung, Y. C. Kang, and S. B. Park, "Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis", Journal of Materials Science Letters, vol. 16, 1997, pp. 1848-1849.
[15]A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad, "Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism", Nano-Micro Letters, vol. 7, 2015, pp. 219-242.
[16]K. L. Chopra and S. R. Das, "Thin film Solar Cells.", Plenum New York, 1983.
[17]H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. -E. Lindquist, "High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes.", The Journal of Physical Chemistry B, vol. 101, 1997, pp. 2598- 2601 .
[18]S. G. Kumar, and K. S. R. K. Rao, "Zinc oxide based photocatalysis: tailoring surface bulk structure and related interfacial charge carrier dynamics for better environmental applications", Royal Society of Chemistry Advances, vol. 5, 2015, pp. 3306 .
[19]S. Ezhilvalavan and T. R N. Kutty, “High-frequency capacitance resonance of ZnO-based varistor ceramics”, Applied Physics Letters.,vol. 69, 1996, pp. 3540-3542
[20]F. Xu, and L. Sun, “Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells”, Energy & Environmental Science.,vol. 4, 2011, pp. 818.
[21]H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa,and M. Tachiya, "Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3-Zn2+) aggregate formation, " The Journal of Physical Chemistry B, vol. 107, 2003, pp. 2570-2574.
[22]K. R. Raghupathi, R. T. Koodali, and A. C. Manna, “Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles, ” Langmuir, vol. 27, 2011, pp. 4020-4028.
[23]S. Adhikari, A. Banerjee, N. K. R. Eswar, D. Sarkar,and G. Madras ,"Photocatalytic inactivation of E.Coli by ZnO-Ag nanoparticles under solar radiation", RSC Advances, vol. 5, 2015, pp. 51067.
[24]V. Subramanisn, E. E. Wolf,and P. V. Kamat, "Catalysis with TiO2/Gold nanocomposites effect of metal particle size on the Fermi level equilibration", Journal of the American Chemical Society., vol. 126, 2004, pp. 4943.
[25]張讚昌,邱南昌,尤封陵,施玟玲,朱敬儀,謝雅如,王瑜琦,李文珍,實用微生物學,第三章,2003,7-8頁。
[26]Mohammad J. Hajipour, Katharina M. Fromm, Ali Akbar Ashkarran, Dorleta Jimenez de Aberasturi, Idoia Ruiz de Larramendi, Teofilo Rojo, Vahid Serpooshan, Wolfgang J. Parak, and Morteza Mahmoudi, “Antibacterial properties of nanoparticles”, Trends in Biotechnology, vol. 30, 2012, pp. 10.
[27]Robert. W. Bauman, 李振登, 王孟亮,微生物學(精華版),第三章,2008, 66-71頁。
[28]楊美桂,微生物學,2003,35-37頁。
[29]G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa,and G. Ravi, "Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles," Materials Research Bulletin, vol. 76, 2016, pp. 48-61.
[30]O. Seven, B. Dindar, S. Aydemir, D. Metin, MA. Ozinel,and S. Icli ,"Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust," Journal of Photochemistry and Photobiology A, vol. 165, 2004, pp. 103-107.
[31]鍾楊聰、方繼、許元勳、陳啟楨、林建谷、林春福、巢佳莉,基礎微生物學,2002,336頁。
[32]J.H. Lee, M. Kang, S.J. Choung, K. Ogino, S. Miyata, M.S. Kim, J.Y. Park,and J.B. Kim, "The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for Giardia lamblia," Water Research, vol. 38, 2004, pp. 713-719.
[33]吳定峰、邱志威,食品微生物學精要,藝軒圖書出版社,.2003。
[34]Talaro ,and Chess,Foundations in Microbiology,Ninth Edition,2015。
[35]謝奉家,微生物殺菌劑-枯草桿菌(上),豐年社,2008,第46-50頁。
[36]L. Verschuer., G. Rombaut, P. Sorgeloos,and W. Verstrete, “Probiotic bacteria as biological control agents in aquaculture,” Microbiology and Molecular Biology Reviews, vol. 64, 2000, pp. 655-671
[37]李亞倩,枯草桿菌發酵生成孢子與生產 iturin A 之研究,碩士論文,大同大學生物工程研究所,台北,2011。
[38]K.H. Tam, A.B. Djurisic, C.M.N. Chan, Y.Y. Xi, C.W. Tse, Y.H. Leung, W.K. Chan, F.C.C. Leung, and D.W.T. Au, "Antibacterial activity of ZnO nanorods prepared by hydrothermal method, " Thin Solid Films, vol. 516, 2008, pp. 6167-6174.
[39]N. M. Zain, A.G.F. Stapley,and G. Shama, "Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications," Carbohydrate Polymers, vol. 112, 2014, pp. 195-202.
[40]Y. Li, W. Zhang, J. Niu,and Y. Chen, "Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles," American Chemical Society, vol. 6, no. 6, 2012, pp. 5164-5173.
[41]S. Adhikari, A. Banerjee, N. K. R. Eswar, D. Sarkar,and G. Madras, "Photocatalytic inactivation of E. Coli by ZnO–Ag nanoparticles under solar radiation," RSC Advances, vol. 5, 2015, pp. 51067-51077.
[42]G. Tong, F. Du, W. Wu, R. Wu, F. Liu,and Y. Liang, "Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process," Journal of Materials Chemistry B vol. 1, 2013, pp. 2647-2657.
[43]張瑋辰,合成氧化鋅奈米聚集體應用於染料敏化太陽能電池之研究,博士論文,國立台北科技大學,台北, 2013。
[44]陳泓碩,水溶液法製備氧化鋅奈米聚集體應用於染料敏化太陽能電池的研究,博士論文,國立台北科技大學,台北,2015。
[45]喻映蓉,混摻奈米顆粒半固態電解質應用於染料敏化太陽能電池之研究,碩士論文,國立台北科技大學,台北, 2014。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top