跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王建文
研究生(外文):Jian-Wen Wang
論文名稱:木黴菌與黑麴黴固態培養生產纖維素酶及狼尾草糖化的研究
論文名稱(外文):Enzyme production by solid-state fermentation of Trichoderma reesei and Aspergillus niger for saccharification of napier grass
指導教授:余琬琴
口試委員:蘇昭瑾張瑞豐
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:狼尾草、木質纖維素、纖維素酶、固態發酵、混合培養
外文關鍵詞:Napier grasslignocellulosecellulasesolid state fermentationco-cultivation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以狼尾草和豆渣為基質(substrate),進行木黴菌(Trichoderma reesei ATCC 56765)及黑麴黴菌(Aspergillus niger ATCC 10864)的固態培養生產纖維素酶(cellulase),並以狼尾草為基質測試粗酵素萃取液之水解糖化效果。為了改善木黴菌本身β-葡萄糖苷酶(β-glucosidase)不足的缺點,我們測試兩種策略:(1)混合培養,即木黴菌/黑麴黴菌的共培養; (2)粗酵素液混合,即分別培養木黴菌與黑麴黴菌,萃取其粗酵素液,再以等體積混合粗酵素液。研究結果顯示,兩種策略皆可提升β-葡萄糖苷酶活性,採混合培養時,纖維素水解酶與β-葡萄糖苷酶活性可分別達13.1 ± 1.3 FPU/g dry substrate與 13.9 ± 1.2 CBU/g dry substrate,而混合粗酵素液的纖維素水解酶與β-葡萄糖苷酶活性可分別達 12.4 ± 1.1 FPU/g dry substrate與 21.9 ± 0.5 CBU/g dry substrate。
隨後我們在10 FPU/g-glucan的酵素劑量與2 wt%的基質濃度下,測試粗酵素萃取液水解糖化狼尾草的效能,並與市售酵素液作比較。我們使用三種不同狼尾草物料,包含未經預處理的原始物料(pristine)、鹼性(5 % NaOH)和鹼性過氧化氫(alkaline hydrogen peroxide)預處理過的狼尾草,後二者有較高的葡聚醣(glucan)與較低的木質素(lignin)含量,有助於纖維素的水解。研究結果顯示,相較於市售酵素液,自產之粗酵素液有較為優越的水解糖化效果,其中又以粗酵素混合液的效果最佳,其葡萄糖產率可達市售酵素液的兩倍以上,水解基質為鹼性過氧化氫預處理過的狼尾草時,葡萄糖產率可達44 %。
Napier grass and okara (or soy pulp) were used as the substrate for the production of cellulolytic enzymes by Trichoderma reesei (ATCC 56765) and Aspergillus niger (ATCC 10864) via solid-state fermentation. To overcome the low -glucosidase activity problem of T. reesei monoculture, two strategies were investigated: (1) mix culture approach, i.e., co-cultivation of T. reesei and A. niger; (2) enzyme mixture approach, i.e., mixing crude enzyme extracts from monocultures of T. reesei and A. niger. Both approaches were able to increase the level of -glucosidase activity compared to T. reesei monoculture. The cellulosic enzyme activities achieved by the mix culture approach were 13.1 ± 1.3 FPU/g dry substrate and 13.9 ± 1.2 CBU/g dry substrate, while the enzyme mixture approach attained 12.4 ± 1.1 FPU/g dry substrate and 21.9 ± 0.5 CBU/g dry substrate.
The hydrolysis efficacy of our crude enzyme extracts was compared to commercial enzyme preparations at a cellulase loading of 10 FPU/g-glucan and 2 wt% substrate concentration. Three different substrates were used, i.e., pristine (un-pretreated), alkaline pretreated (AP), and alkaline hydrogen peroxide pretreated (AHP) napier grass. The pretreatments partially removed lignin and increased the proportion of cellulose in the substrates, which helped the conversion of glucan. Our crude enzyme extracts, whether from the mix culture or the enzyme mixture approach, show higher hydrolysis efficiency than the commercial enzyme preparations. The highest glucose yield of 44 % was obtained using AHP napier grass as the substrate and the crude extract from the enzyme mixture approach, which was more than twice the glucose yield achieved by the commercial enzyme preparations.
摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究目的 4
第二章 文獻回顧 5
2.1 生質能源的定義 5
2.2 狼尾草 7
2.3 米糠 8
2.4 豆渣 9
2.5 木質纖維素 10
2.5.1 纖維素 12
2.5.2 半纖維素 14
2.5.3 木質素 15
2.6 木質纖維素前處理簡介 17
2.6.1 物理性前處理法 18
2.6.1.1 機械粉碎前處理法 18
2.6.1.1 熱裂解前處理法 18
2.6.2 化學性預處理法 18
2.6.2.1 酸水解預處理法 18
2.6.2.2 鹼水解預處理法 18
2.6.2.4 鹼性過氧化氫去木質素預處理法 20
2.6.2.4 臭氧解預處理法 20
2.6.3 物理/化學性預處理法 20
2.6.3.1 蒸煮爆碎法 20
2.6.3.2 濕氧爆碎法 22
2.6.3.3 鹼性蒸煮爆碎法 23
2.6.4 生物性前處理法 23
2.7 酵素水解 24
2.7.1 纖維素酵素 24
2.7.2 纖維素酵素的種類及作用方式 26
2.7.2.1 內切型纖維水解酶 26
2.7.2.2 外切型纖維水解酶 26
2.7.2.3 纖維雙醣水解酶 26
2.7.2.4 纖維水解酶的作用方式 26
2.7.3 木聚醣酵素 28
2.7.4 木聚醣酵素的種類及作用方式 28
2.7.4.1 內切型木聚醣酶 28
2.7.4.2 外切型木聚醣酶 28
2.8 影響酵素水解的關鍵因子 29
2.9 固態發酵 30
2.9.1 固態發酵菌種分類 30
2.9.2 菌種混合培養 32
第三章 材料與方法 34
3.1 實驗儀器 34
3.2 實驗藥品與材料 35
3.2.1 藥品 35
3.2.2 菌株 37
3.2.2.1 菌株保存 37
3.2.2.2 血球計數器計數 37
3.2.3 固態發酵基質 38
3.2.3.1 狼尾草 38
3.2.3.2 米糠 38
3.2.3.3 豆渣 39
3.3 實驗流程 40
3.3.1 固態發酵基質 41
3.3.2 菌株 41
3.3.3 酵素水解基質 42
3.4 菌株兼容性測試 43
3.4.1 接種方式A 43
3.4.2 接種方式B 44
3.4.3 接種方式C 44
3.5 固態發酵 45
3.5.1 固態發酵氮源改變 45
3.5.2 狼尾草和豆渣混合培養 45
3.5.3 不同種菌株混合培養 45
3.5.4 酵素萃取 46
3.6 酵素水解 47
3.6.1 酵素水解基質 47
3.6.1.1 鹼性預處理 47
3.6.1.2 過氧化氫去木質素鹼性蒸爆預處理 47
3.6.2 酵素水解步驟 48
3.7 分析方法 49
3.7.1 狼尾草成分分析 49
3.7.1.1 乾重測試 ( NREL Lap-001規範 ) 49
3.7.1.2 碳水化合物分析 ( NREL Lap-002規範 ) 50
3.7.1.3 酸不可溶木質素分析 ( NREL Lap-003規範 ) 52
3.7.1.4 酸可溶木質素分析 52
3.7.1.5 灰分分析 ( NREL Lap-005規範 ) 53
3.7.2 酵素活性測定 54
3.7.2.1 葡萄糖標準檢量線 54
3.7.2.2 p-nitrophenol標準檢量線 55
3.7.2.3 木糖標準檢量線 55
3.7.2.4 纖維素水解酶檢測 ( Cellulase ) 56
3.7.2.5 Beta-葡萄糖苷酶測定 ( β-glucosidase ) 57
3.7.2.6 木聚醣水解酶測定 ( Xylanase ) 58
3.8 高效能液相層析儀分析原理 59
第四章 結果與討論 61
4.1 固態發酵基質探討 61
4.1.1 狼尾草的組成 61
4.1.2 米糠的組成 62
4.1.3 豆渣的組成 62
4.2 以木黴菌進行固態發酵 63
4.2.1 氮源種類對酵素活性的影響 63
4.2.2 固態基質比例對酵素活性影響 64
4.2.3 培養天數對酵素活性影響 66
4.3 兼容性測試 67
4.3.1 接種方式A 67
4.3.1.1 豆渣 67
4.3.1.1 米糠 68
4.3.2 接種方式B 68
4.3.2.1 豆渣 68
4.3.2.2 米糠 69
4.3.3 接種方式C 69
4.3.3.1 豆渣 69
4.3.3.2 米糠 70
4.3.4 兼容性評估 70
4.4 以黑麴黴進行固態發酵 71
4.5 混合培養 72
4.6 粗酵素液混合 74
4.7 酵素水解 75
4.7.1 酵素水解基質探討 76
4.7.2 無處理狼尾草水解情形 77
4.7.2.1 葡萄糖 77
4.7.2.2 木糖 78
4.7.3 鹼性預處理狼尾草水解情形 79
4.7.3.1 葡萄糖 79
4.7.3.2 木糖 80
4.7.4 過氧化氫去木質素鹼性蒸爆預處理狼尾草水解情形 81
4.7.4.1 葡萄糖 81
4.7.4.1 木糖 82
4.7.5 商業酵素液水解情形 83
4.7.6 還原糖分析 85
第五章 結論 87
參考文獻 89
[1]Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss. P., Kadner,
S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C., Eds., IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press: Cambridge, U.K., 2011.
[2]陳凡,「二代生物質技術上路」,能源報導,第三期,2008。
[3]Gray K.A., Zhao L., Emptage M. “Bioethanol,” Current Opinion in Chemical
Biology vol. 10, 2006, pp. 141-146.
[4]Kolasa, M., Kiær Ahring, B, Stephensen Lübeck, P., Lübeck, M., “Co-cultivation of
Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production,” Bioresource technology, vol. 169, 2014, pp.143-148.
[5]吳耿東,李宏台,「生質源能化腐朽為能源」,科學發展期刊,第三百八十三
期,2004。
[6]古森本,生質能源作物之開發與潛力,農業生技產業季刊,第十三期,2008,
pp. 46-53。
[7]成游貴,狼尾草育種與多元化利用,科學發展,第四百零七期,2006,pp. 24-
29。
[8]李姿蓉,林正斌,臺灣狼尾草栽培品種簡介,農業出版品,第兩百七十七期,
2015。
[9]歐錦綢,米糠水溶性成分之保濕性研究,九十七年度教師研究獎助成果報告,
中華醫事科技大學,2009。
[10]Zhang Y. H. P., “Reviving the carbohydrate economy via multi-product lignocellulose
biorefineries,” Industrial Microbiology and Biotechnology, vol.35, 2008, pp. 367-
375.
[11]Michael E. Himmel, Shi-You Ding, David K. Johnson, William S. Adney, Mark R.
Nimlos, John W. Brady, Thomas D. Foust, “Biomass Recalcitrance: Engineering
Plants and Enzymes for Biofuels Production,” Science, vol.315, 2007, pp.804-807.
[12]Ma, K., Ruan, Z., ”Production of a lignocellulolytic enzyme system for simultaneous
bio-delignification and saccharification of corn stover employing co-culture of
fungi,” Bioresource Technology, vol. 175, 2015, pp.586-593.
[13]Rana, V., D. Eckard, A., Teller, P, K. Ahring, B., ” On-site enzymes produced from
Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine,” Bioresource Technology, vol. 154, 2014, pp.282-289.
[14]Šwiątek, K., Lewandowska, M., Šwiątek, M., Bednarski, W., Brzozowski, B.,” The
improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus
giganteus polysaccharides,” Bioresource Technology, vol. 151, 2014, pp.323-331.
[15]P. Wood, L., Elliston, A., R.A. Collins, S., Wilson, D., Bancroft, L., W. Waldron, K., ”
Steam explosion of oilseed rape straw: Establishing key determinants of saccharification efficiency,” Bioresource Technology, vol. 162, 2014, pp.175-183.
[16]陳文衡,郭家倫,黃文松,王嘉寶,纖維酒精技術之發展,農業生技產業季
刊,第九期,2007,pp. 62-69。
[17]Zhang Y. H. P., “Reviving the carbohydrate economy via multi-product lignocellulose
biorefineries,” Industrial Microbiology and Biotechnology, vol. 35, 2008, pp. 367-
375.
[18]Swatloski R. P., Spear S. K., Holbery, J. D., Rogers R. D., “Disslution of cellulose
with ionic liquids,” The American Chemical Society, vol. 124, 2002, pp. 4974-4975.
[19]Vazquez M. J., Alonso J. L., Dominguez H., Parajo J. C., “Xylooligosaccharides:
manufacture and applications,” Trends in Food Science & Technology, vol. 11, no.
11, 2000, pp. 387-393.
[20]尤智立,2003,嗜熱高溫纖維分解菌纖維分解酵素的探討,碩士論文,國立中
山大學生物科學研究所,高雄。
[21]Hsu C. K., Liao J. W., Chung Y. C., Hsieh C. P. and ChanY. C.,
“Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and
precancerous colonic lesion development in rats, “ American Journal of Clinical
Nutrition, vol.134, no.6, pp. 1523-1528.
[22]王秀華,木材化學及其應用,台北:國立編譯館,2002。
[23]Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F.,
Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler,
J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E.,” Lignin valorization:
improving lignin processing in the biorefinery,” Science, vol. 344, 2014, pp. 12013-
12018.
[24]Lee R. L., Charles E. W., Tillman U. G., “Biocommodity engineering,” Biotechnol.
Prog.,” vol.15, 1999, pp. 777-793.
[25]Aiello C., Ferrer A., Ledesma A., “Effect of alkaline treatments at various
temperatures on cellulase and biomass production using submerged sugarcane
bagasse fermentation with Trichoderma reesei QM 9414,” Bioresource Technology, vol.57, 1996, pp. 13-18.
[26]Glazer A. W., Microbial biotechnology: fundamentals of applied microbiology, 1995.
[27]Kumar, L., Arantes, V., Chandra, R., Saddler, J.,” The lignin present in steam
pretreated softwood binds enzymes and limits cellulose accessibility,” Bioresource
Technology, vol. 103, 2012, pp. 201-208.
[28]Yu, Z., Gwak, K.S., Treasure, T., Jameel, H., Chang, H.M., Park, S.,” Effect of
lignin chemistry on the enzymatic hydrolysis of woody biomass,” ChemSusChem, vol. 7, 2014, pp. 1942-1950.
[29]Zeng, Y., Zhao, S., Yang, S., Ding, S.-Y.,” Lignin plays a negative role in the
biochemical process for producing lignocellulosic biofuels,” Biotechnology, vol. 27, 2014, pp.38-45.
[30]Sun Y. and Cheng J. Y., “Hydrolysis of lignocellulosic materials for ethanol
production: a review,” Bioresource Technology, vol.83, 2002, pp. 1-11.
[31]Cadoche, L., L_opez, G.D.,” Assessment of size reduction as a preliminary step
in the production of ethanol from lignocellulosic wastes,” Biological Wastes, vol. 30, 1989, pp.153-157.
[32]Shafizadeh, F., Bradbury, A.G.W.,” Thermal degradation of cellulose in air and
nitrogen at low temperatures,” Applied Polymer, vol.23, 1979, pp.1431-1442.
[33]Sivers, M.V., Zacchi, G.,” A techno-economical comparison of three processes
for the production of ethanol from pine,” Bioresource Technology, vol.51,1995, pp.43-52.
[34]Mosier N., Wyman C., Dale B., Elander R., Lee Y. Y., Holtzapple M. and Ladisch M.,
“Features of promising technologies for pretreatment of lignocellulosic biomass,”
Bioresource Technology, vol.96, 2005, pp. 673-686.
[35]李穩宏,吳大雄,「麥稈纖維酶解法產糖預處理過程工藝條件」,西北大學學報
(自然科學版),1997。
[36]Tarkow, H., Feist, W.C.,” A Mechanism for Improving the Digestibility of
Lignocellulosic Materials with Dilute Alkali and Liquid Ammonia ,” Advance in Chemistry, vol. 95, 1969, pp. 197-218.
[37]Fan, L.T., Gharpuray, M.M., Lee, Y.-H.,” Cellulose Hydrolysis Biotechnology
Monographs,” Berlin, 1987, p. 57.
[38]Roberts, Jr. J.L., M.M. Morrison and D.T. Sawyer, J. Am. Chem. Soc., vol.100, 1978,
pp.329-330.
[39]Spittler, T.D. and C.W. Dence, Svensk Papperstid., vol.80, 1977, pp.275-284.
[40]Azzam, A.M.,” Pretreatment of cane bagasse with alkaline hydrogen peroxide
for enzymatic hydrolysis of cellulose and ethanol fermentation,” Environmental Science and Health, vol. 24, 1989, pp. 421-433.
[41]Ben-Ghedalia, D., Miron, J.,”The effect of combined chemical and enzyme
treatment on the saccharification and in vitro digestion rate of wheat straw,” Biotechnology, vol. 23, 1981, pp. 823-831.
[42]Vidal, P.F., Molinier, J.,” Ozonolysis of lignin – improvement of in vitro digestibility
of poplar sawdust,” Biomass, vol. 16, 1988, pp. 1-17.
[43]McMillan J. D., “Pretreatment of lignocellulosic biomass,” ACS Symposium Series,
vol.566, 1994, pp. 299-324.
[44]Chum H. L., Johnson D. K., Black S. K. and Overend R. P., “Pretreatment-catalyst
effects and the combined severity parameter,” Biochemistry and Biotechnology,
vol. 24-25, 1990, pp. 1-14.
[45]Heitz M., Capek-Menard E., Keoberle P. G., Gagne J., Chornet E., Overend R. P.,
Taylor J. D. and Yu E.,“ Fractionation of Populus tremuloides at the pilot plant scale:
Optimization of steam pretreatment conditions using the STAKE II technology,”
Bioresource Technology, vol.35, 1991, pp. 23-32.
[46]Avellar B. K. and Glasser W. G., “Steam-assisted biomass fractionation. I. Process
considerations and economic evaluation,” Biomass and Bioenergy, vol.14, 1998, pp.
205-218.
[47]Moniruzzaman M., “Saccharification and alcohol fermentation of steam-exploded
rice straw,” Bioresource Technology, vol.55, 1996, pp.111-117.
[48]Sheldon J.B. Duff, Nichola Charles and Shawn D. Mansfield, “Effect of Oxygen
Delignification Operating Parameters on Downstream Enzymatic Hydrolysis of
Softwood Substrates,” Biotechnology, vol.19, 2003, pp.1606-1611.
[49]Carlos M., “Wet oxidation as a pretreatment method for enhancing the enzymatic
convertibility of sugarcane bagasse,” Enzyme and Microbial Technology, vol.40,
2007, pp. 426-432.
[50]Boominathan, K., Reddy, C.A.,” cAMP-mediated differential regulation of
lignin peroxidase and manganese-dependent peroxidase production in the white-rot
basidiomycete Phanerochaete chrysosporium,” Proceedings of the National Academy
of Sciences, vol. 89, 1992, pp. 5586-5590.
[51]Akin, D.E., Rigsby, L.L., Sethuraman, A., Morrison, W.H.-III., Gamble, G.R.,
Eriksson, K.E.L.,” Alterations in structure, chemistry, and biodegradability of
grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora ad
Cyathus stercoreus,” Applied and Environmental Microbiology, vol. 61, 1995, pp.
1591–1598.
[52]Ander, P., Eriksson, K.-E.,” Selective degradation of wood components by
white-rot fungi,” Physiologia Plantarum, vol. 41, 1977, pp. 239-248.
[53]Duff S. J. B., Murray W. D.,“ Bioconversion of forest products industry waste
cellulosics to fuel ethanol:A review,” Bioresource Technology, vol. 55, 1996, pp. 1-
33.
[54]Lynd, L.R., Paul J. Weimer, P.J., van Zyl, W.H., S. Pretorius, I.S.,” Microbial
Cellulose Utilization: Fundamentals and Biotechnology,” Microbilogy and
Molecular Biology Reviews, vol. 66, 2002, pp.506-577.
[55]Kubicek, C. P., and M. E. Penttilä,” Regulation of production of plant polysaccharide
degrading enzymes by Trichoderma,” Trichoderma and Gliocladium, vol. 2, 1998,
pp. 49-72.
[56]齊倍慶,從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究,碩士論文,
新竹國立清華大學生命科學研究所,2000。
[57]尤立智,嗜高溫纖維分解菌纖維分解酵素的探討,碩士論文,台灣大學生物
產業機電工程學研究所, 2003。
[58]戴上凱,熱穩定性纖維素分解細菌分離株之特性探討與親緣關係之研究,博士
論文,國立中山大學生物科學研究所,2004。
[59]Bisaria V. S., Mishra S.,” Regulatory aspects of cellulase biosynthesis and secretion,”
Critical Reviews in Biotechnology, vol. 9, 1989, pp. 61-103.
[60]Bhat M. K. and S. Bhat,” Cellulose degrading enzymes and their potential industrial
Applications,” Biotechnology Advances , vol. 15, 1997, pp. 583-620.
[61]Ghose T. K.,” Cellulase biosynthesis and hydrolysis of cellulosic substances,”
Biochemical Engineering, vol. 6, 1976, pp.39-74.
[62]Bisaria V. S. and Ghose T. K.,” Biodegradation of Cellulosic Materials - Substrates,
Microorganisms, Enzymes and Products,” Enzyme and Microbial Technology, vol. 3, 1981, pp. 90-104.
[63]Collins,T.,Gerday,C.,and Feller,G.” Xylanases, xylanase families and extremophilic
xylanases,” Microbiology Reviews, vol. 29, 2005, pp.3-23.
[64]Kulkarni,N., Shendye, A., and Rao, M.,” Molecular and biotechnological aspects of
xylanases,” Microbiology Reviews, vol. 23, 1999, pp.411-456.
[65]Cleemput, G., Hessing, M., van Oort, M., Deconynck, M., Arsène Delcour, J.,”
Purificication and Characterization of a P-D-Xylosidase and an Endo-Xylanase from Wheat Flour,” Plant Physiol, vol.113, 1997, pp.377-386.
[66]La Grange, D.C., Claeyssens, M., Pretorius, I.S., and Van Zyl, W.H.,” Coexpression
of the Bacillus pumilus β-xylosidase (xynB) gene with the Trichoderma reesei β-
xylanase 2 ( xyn2 ) gene in the yeast Saccharomyces cerevisiae,” Microbiology and Biotechnology, vol. 54, 2000, pp. 195-200.
[67]Stenberg K., Tengborg C., Galbe M., Zacchi G.,” Optimisation of steam
pretreatment of SO2-impregnated mixed softwoods for ethanol production,”
Chemical Technology and Biotechnology, vol. 71, 1998, pp. 299-308.
[68]McMillan J. D.,” Pretreatment of lignocellulosic biomass,” ACS Symposium Series,
vol.566, 1994, pp. 299-324.
[69]Cheung S. W. and Anderson B. C., “Laboratory investigation of ethanol production
from municipal primary wastewater solids,” Bioresource Technology, vol. 59, 1997,
pp. 81-96.
[70]Li, H., Pu, Y., Kumar, R., Ragauskas, A.J., Wyman, C.E.,” Investigation of lignin
deposition on cellulose during hydrothermal pretreatment, its effect on cellulose
hydrolysis, and underlying mechanisms,” Biotechnology and Bioengineering,
vol. 111, 2014, pp. 485-492.
[71]Reese E. T., Manguire A.,” Surfactants as stimulants of enzyme production by
microorganisms,” Applied Microbiology, vol. 17, 1969, pp. 242-245.
[72]Lin, X., Qiu, X., Yuan, L., Li, Z., Lou, H., Zhou, M., Yang, D.,” Lignin-based
polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates,” Bioresource Technology, vol. 185, 2015, pp. 165-170.
[73]Qing, Q., Yang, B., Wyman, C.E.,” Xylooligomers are strong inhibitors of
cellulose hydrolysis by enzymes,” Bioresource Technology, vol. 101, 2010, pp. 9624-
9630.
[74]吳振強,固態發酵技術與應用,北京,化學工業出版社,2006。
[75]Sukumaran, R. K., R. R. Singhania, and A. Pandey,” Microbial celluase-
production,applactions and challenges,” Scientific and Industrial Research. vol. 64,
2005, pp832-844.
[76]Veal, D. A., and J. M. Lynch,” Associative cellulolysis and nitrogen fixation by
co-cultures of Trichoderma harzianum and Clostridium butyricum: the effects of
ammonium nitrogen on these processes,” Journal of Applied Bacteriology, vol.
63, 1987, pp. 245-253.
[77]Din, N., H. G. Damude, N. R. Gilkes, R. C. Miller, R. A. J. Warren, and D. G.
Kilburn,” C1-Cx revisited: intramolecular synergism in a cellulase,” Proceedings
of the National Academy of Sciences, vol. 91, 1994, pp. 11383-11387.
[78]Teeri, T. T.,” Crystalline cellulose degradation: new insight into the function of
cellobiohydrolases,” Trends Biotechnol, vol. 15, 1997, pp. 160-167.
[79]Lyman Porter, C.,” Concerning the characters of certain fungi as exhibited by their
growth in the presence of other fungi,” American Journal of Botany, vol. 11, 1924, pp. 168-188.
[80]Samson, R.A., Hoekstra, E.S.,” Introduction to food-and airborne fungi.
Centraalbureau voor Schimmelcultures (CBS),” Jens Christian Frisvad, vol. 7, 2004,
pp. 389.
[81]張景翔,以狼尾草和米糠為固態發酵基質生產纖維水解酶之研究,碩士論文,
國立台北科技大學有機高分子研究所,臺北,2014。
[82]蔡宗源,木質素去除對狼尾草木聚醣的蒸爆萃取與酵素水解的影響,碩士論
文,國立台北科技大學有機高分子研究所,臺北,2014。
[83]Cristina Moreira da Silveira, Eliana Badiale-Furlong,“ Sperathe effects of solid-state
fermentation in the functional properties of defatted rice bran and wheat Bran,”
Brazilian Archives of Biology and Technology, vol.52, 2009, pp. 1555-1562.
[84]McCaskill, D. R., Zhang, F,” Use of rice bran oil in food,” Food Technology, vol.
53(2), 1999, pp. 50-53.
[85]Chan Vong, B., Shao-Quan, L.,” Biovalorisation of okara (soybean residue) for food
and nutrition,” Trends in Food Science and Technlolgy, vol. 52, 2016, pp. 139-147.
[86]Rosangela, D. P. B., Flávio, C. F., Cristiane, S.,” Saccharification of biomass using
whole solid-state fermentation medium to avoid additional separation steps,”
American Institute of Chemical Engineers, vol. 29, 2013, pp. 1430-1440.
[87]Z. Yinghuai, K. T. Yuanting and N. Hosmane, "Applications of Ionic Liquids in
Lignin Chemistry," New Aspects for the Future.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top