(3.238.96.184) 您好!臺灣時間:2021/05/08 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊羽旋
研究生(外文):Yang Yu Syuan
論文名稱:氮化銦鎵與氮化銦錳薄膜結構與電性分析
論文名稱(外文):Structural and electric properties of In1-xGaxN and InN:Mn thin films
指導教授:張本秀
口試委員:吳永富蔡子萱
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:氮化銦鎵、錳離子佈植、簡併半導體、無序度
外文關鍵詞:InGaNMn-implanteddegenerate semiconductordisorder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分析氮化銦鎵與氮化銦錳薄膜的結構與電性。XRD 分析顯示薄膜樣品均為 c 軸取向的烏采結構,氮化銦鎵(InxGa1-xN)樣品銦含量 x 約 37 ~ 43 %,c 軸參數約為 5.4 Å ; 氮化銦錳樣品錳含量約 1 %,c 軸參數約為 5.7 Å 。
霍爾量測結果顯示樣品皆為電子式傳導載子(n-type), 氮化銦鎵樣品載子濃度約2×1014cm-2(1×1019cm-3),錳離子佈植的氮化銦薄膜載子濃度約為 1016~1017cm-2(5×1020~21cm-3),皆屬於簡併半導體。其電阻率隨溫度增加而下降,表示薄膜具有負電阻係數,公式擬合顯示其與晶格無序度引起之弱侷限效應有關。

拉曼頻譜分析顯示鎵與錳離子摻雜主要影響氮化銦晶格的鍵結強度,同時降低主晶格的長程有序晶格排列,增加晶格排列的無序度,錳離子摻雜引起的晶格排列無序度大於鎵離子。

氮化銦鎵(InxGa1-xN,x = 0.37 ~ 0.43 ),樣品具有明顯的隨外加電流變化所引起的變電阻率特性,氮化銦錳則無,本研究推測適當的鍵結強度以及晶格排列無序度是引發氮化銦電性的可能機制。
This study mainly aims at the structural and electrical properties of InxGa1-xN and In1-xMnxN films. XRD analyses showed that all samples were wurtzite structure with c-axis orientation. The c-axis parameters of InxGa1-xN(x=0.37~0.43) and In1-xMnxN(x=0.01,0.03)films were 5.4 Å and 5.7 Å , respectively. Results of Hall measurements showed that all samples regarded as degenerate semiconductors were n-type with high carrier concentration about 1×1019 cm-3 for InxGa1-xN and 5 ×1020~21 cm-3 for In1-xMnxN. The resistivity decreased with increasing temperature. This result indicated that films had a negative temperature coefficient of resistance and could be fitted by weak localization (WL) effect due to quantum interference in structural or compositional disorder. The Raman spectra showed that Ga and Mn doping mainly affected the bonding strength of InN lattice. However, Mn doping induced lattice disorder more than Ga doping. InxGa1-xN films show clear current-dependent behavior at room temperature, which did not appear in In1-xMnxN films. The phenomenon can be explained in terms of structural or compositional disorder of these systems by Raman measurement.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1前言 1
1.2研究動機 3
第二章 文獻回顧 4
2.1 三族氮化物半導體特性 4
2.1.1 Vegard’s law 5
2.1.2低溫電子傳輸 8
2.1.3銦含量與電性關係 9
2.1.4摻錳物理特性 12
2.1.5 GaN合金薄膜 14
2.2拉曼散射 18
2.3 InN合金的晶格振動 19
2.3.1理論與實驗值 20
2.3.2峰值頻移 21
2.4 GaN合金的晶格振動 22
2.4.1 GaN振動模式 22
2.4.2局部振盪模式 23
2.4.3鍵結強度與頻移 24
第三章 實驗流程與分析方法 25
3.1實驗流程與樣品介紹 25
3.1.1 InGaN薄膜 25
3.1.2摻錳InN及GaN薄膜 27
3.1.3離子佈植 27
3.1.4快速熱退火 28
3.2分析儀器 32
3.2.1 X-ray 繞射儀量測 32
3.2.2 Vegard’s Law 35
3.2.3霍爾效應量測 35
3.2.4拉曼光譜分析儀 37
第四章 結果與討論 39
4.1結構分析 39
4.1.1 X-ray繞射分析 39
4.2電性分析 51
4.2.1氮化銦鎵薄膜 51
4.2.2摻錳氮化銦薄膜 60
4.2.3摻錳氮化鎵薄膜 65
4.3光學特性分析(Raman) 67
4.3.1氮化銦鎵薄膜 67
4.3.2摻錳氮化銦薄膜 70
4.3.3摻錳氮化鎵薄膜 75
第五章 結論 78
參考文獻 79
[1] Isamu AKASAKI and Hiroshi AMANO, "Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters, " J. Appl. Phys, Vol. 36, (1997), pp.5393-5408.
[2] Daniel Steigerwald, Serge Rudaz, Heng Liu, R. Scott Kern, Werner Götz, and Robert Fletcher, "III-V Nitride Semiconductors for High-Performance Blue and Green Light-Emitting Devices," The Journal of The Minerals, 49 (9) (1997), pp.18-23.
[3] Jonathan J. Wierer, Jr, Aurelien David and Mischa M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photonics 3, (2009), 163 – 169.
[4] Miyajima, T., Kudo Y., Liu K.L., Uruga T., Honma T., Saito Y., Hori M., Nanishi Y., Kobayashi T., and Hirata S., "Structure analysis of InN film using extended X-ray absorption fine structure method," Phys. Stat. Sol. (b) 234, (2002), 801.
[5] Niladri Sarkar, Subhasis Ghosh, "Temperature dependent band gap shrinkage in GaN: Role of electron-phonon interaction," Solid State Communication, 149, (2009), pp.1288-1291.
[6] C. Bacaksiz , H. Sahin, H. D. Ozaydin, S. Horzum, R. T. Senger, and F. M. Peeters, "Hexagonal AlN: Dimensional-crossover-driven band-gap transition," Phys. Rev. B 91, 085430, (2015)
[7] J. Wu, W. Walukiewicz, "Band gaps of InN and group III nitride alloys, " Superlattices and Microstructures 34, (2003), 63–75
[8] Q. Y. Xie, M. Q. Gu, L. Huang, F. M. Zhang, and X. S. Wu, "Defect-induced room temperature ferromagnetism in un-doped InN film," AIP Advances 2, 012185 (2012) 80
[9] V. Lebedev, V. Cimalla, T. Baumann, O. Ambacher et al. "Effect of dislocations on electrical and electron transport properties of InN thin films. II. Density and mobility of the carriers," JOURNAL OF APPLIED PHYSICS 100, 094903, (2006).
[10] A. Kadysa, T. Malinauskasa, T. Grinysa, M. Dmukauskas et al. "Growth of InN and In rich InGaN layers on GaN templates by pulsed MOCVD," Journal of Electronic Materials, Vol. 44, No. 1, (2015), pp 188-193.
[11] Jessica H. Chai, Thomas H. Myers, Young-Wook Song, Roger J. Reeves et al, "MBE growth and characterization of Mn-doped InN," J. Vac. Sci. Technol. B, 30(2), (2012).
[12] Fong Kwong Yam, Li Li Low, Sue Ann Oh and Zainuriah Hassan, "Gallium Nitride: An Overview of Structural Defects, Optoelectronics," Materials and Techniques, Prof. P.Predeep (Ed.) (2011).
[13] Jr-Tai Chen,a) Ingemar Persson, Daniel Nilsson, Chih-Wei Hsu, "Room-temperature mobility above 2200 cm2 /Vs of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure," Appl. Phys. Lett. 106, 251601, (2015)
[14] J. M. Barker, D. K. Ferry, D. D. Koleske, and R. J. Shul, "Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models," J.Appl. Phys. 97, 063705, (2005).
[15] R.S. Zhang n, J.F. Jiao, X.Wu , "The origin of yellow band emission and cathodoluminescence of Au-catalyzed wurtzite GaN nanowires," Physica E, 80, (2016),pp. 91–94.
[16] Taiki Yamamoto, Hiroyuki Sazawa, Naohiro Nishikawa, "Reduction in Buffer Leakage Current with Mn-Doped GaN Buffer Layer Grown by Metal Organic Chemical Vapor Deposition," J. Appl. Phys. 52, (2013), 08JN12.
[17] X. Y. Cui, B. Delley, A. J. Freeman et al, "Neutral and charged embedded clusters of Mn in doped GaN from first principles," PHYSICAL REVIEW B 76, 045201, (2007)81
[18] Ian M. Watson, "Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys:A key chemical technology for advanced device applications," Coordination Chemistry Reviews 257, (2013), 2120–2141.
[19] Osamu Oda, "Compound Semiconductor Bulk Materials and Characterizations Vol.2," World Scientific, (2012).
[20] Wen-Hao Chang, Wen-Cheng Ke, Shu-Hung Yu, "Effects of growth temperature on InN/GaN nanodots grown by metal organic chemical vapor deposition," J. Appl. Phys.103, 104306, (2008).
[21] Bo-Ting Liou, Sheng-Horng Yen, Yen-Kuang Kuo, "Vegard’s law deviation in band gaps and bowing parameters of the wurtzite III-nitride ternary alloys," Proceedings of SPIE Vol. 5628, (2005), pp 299-300.
[22] Yong Huang et al, "Growth and characterization of InxGa1−xN alloys by metalorganic chemical vapor deposition for solar cell applications, "Journal of Photonics for Energy Vol. 2, (2012), 028501-1.
[23] A. Yildiz, S.B. Lisesivdin, M. Kasap, M. Bosi, "Anomalous temperature dependence of the electrical resistivity in In0:17Ga0:83N," Solid State Communications, 149, (2009) ,337-340.
[24] A. Yildiz et al, "Electron Transport in Ga-Rich Inx Ga1−x N Alloys,"CHIN.PHYS.LEFT, Vol.24 No.10, (2007), 2931.
[25] Bo-Ting Liou, Sheng-Horng Yenb, Yen-Kuang Kuo, "Vegard’s law deviation in band gaps and bowing parameters of the wurtzite III-nitride ternary alloys," Proceedings of SPIE Vol. 5628, (2005).
[26] P.H. Chang, H.C. Chen, J.W. Lin, "Anomalous magnetic properties of Mn-implanted InN thin films," Thin Solid Films, (2016).82
[27] Budi Mulyanti, A.Subagio et al, "Effect of Growth Temperature and Mn Incorporation on GaN:Mn Thin Films Grown by Plasma-Assisted MOCVD," ITB J. Sci. Vol. 40 A,No. 2, (2008), pp97-108.
[28] Bo. Hu, B. Y. Man et al, "The effects of oxygen co-doping on structural, magnetic and optical properties of Mn-doped GaN," Surf. Interface Anal. (2013), 45, pp1052–1055.
[29] 钱志刚、沈文忠、小川博司、郭其新,「半导体氮化铟( InN)的晶格振动」,物理学进展 Vol. 23 No. 3, (2003).
[30] Alexson D , Bergman L , Nemanich R J , et al. J . Appl. Phys. (2001) , 89 : 798-280.
[31] Y.H. Zhang, L.L. Guo, W.Z. Shen, "Study on the Raman scattering measurements of Mn ion implanted GaN," Materials Science and Engineering B 130, (2006), 269–272.
[32] X. G. Cui, "Raman scattering studies on Mn-doped GaN grown by metal organic chemical vapor deposition," Materials for Renewable Energy & Environment,Vol 2,(2011), pp1773-1778.
[33] 張本秀、周碩威、林家偉、楊昭恩,「InN:Mn 薄膜的類金屬傳輸特性」P2-MM055, Annual Meeting of the Physical Society of Republic of China, (2015)。
[34] 王敏瑞、陈光德、竹有章,六方相 InGaN 外延模的显微 Raman 散射,物理學報,第 55 眷,第 2 期,2006 年,第 914-919 頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔