(3.236.122.9) 您好!臺灣時間:2021/05/09 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陸意森
研究生(外文):I-San Lu
論文名稱:利用無機聚合技術製備綠色水泥纖維板之研究
論文名稱(外文):Production Fiber Green Cement Board by Geopolymeric Technology
指導教授:鄭大偉鄭大偉引用關係
口試委員:鄭大偉吳佳正林凱隆丁原智黃兆龍
口試日期:2016-06-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:無機聚合技術、綠色水泥纖維板、紙漿
外文關鍵詞:Geopolymeric; Shrinkage; Green Cement Board; Paper pulp
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
現今製作水泥纖維板之原料為水泥、矽砂及紙纖維,但水泥於生產過程中會消耗大量的能量,並不符合現代節能減碳之趨勢。根據本團隊過去研究,以燃煤飛灰及爐石粉重量比為 7 : 3,搭配SiO2/Na2O莫耳比為1.28鹼性溶液所製成之無機聚合綠色水泥,於常溫下即可製成,具有良好的耐火性、耐酸鹼性以及低熱傳導性質,且取代每一噸水泥可減少排放0.8噸的二氧化碳,故可用來取代製備水泥纖維板所使用之水泥,降低能源消耗及二氧化碳排放量。
研究係以燃煤飛灰及爐石粉做為主原料,添加SiO2/Na2O莫耳比為1.28之鹼性溶液,搭配變高嶺土、玻璃粉及紙漿製備成綠色水泥纖維板。結果顯示,綠色水泥纖維板最強抗彎強度能達255.3 kgf/cm2,且容積比重為1.2g/cm3,皆符合CNS水泥纖維板(1.0矽酸鈣板)之要求。而經由防火試驗得知,以無機聚合反應製出之綠色水泥纖維板皆具防火性1小時之性能外,當持續2小時加熱,溫度上升至1007℃,試體背板溫度最高為240℃也呈現良好之防火效果。
綠色水泥纖維板因具高收縮之性質,導致製備出之試體會有翹曲之現象,可添加晶型為纖維狀之矽灰石,來填補水分散失後所產生之孔洞。結果顯示,額外添加10wt%矽灰石能減少收縮,使其面翹曲為0.1mm以下。故以無機聚合技術能以較簡易之方式製備綠色水泥纖維板,顯示其具備市場價值。
Nowadays, the Fiber Cement Board are made up of ceramics、silica sandand paper fiber. However, it spends huge amounts of energy through the fabrication of ceramics which doesn’t comply the trend of carbon reduction. According to the research studied by our team, Green Cement can be fabricated under room temperature with the combination of coal fly ash and slag (weight ratio 7:3) in SiO2/Na2O (molar ratio 1.28) alkaline solution. With its great fire resistance, good resistance to acid and base, and low thermal conductivity, it can replace the ceramics through the fabrication of Fiber Cement Board. Besides, the replacement of ceramics can lower 0.8 ton of carbon dioxide for each ton. And through the fire protecting test, Fiber Green Cement Board showed the good fire protection.
All the Fiber Green Cement Board are made up of coal fly ash and slag in SiO2/Na2O alkaline solution and combined with metakaoline、glass powder and paper pulp. Several measurements indicated that the flexural strength of the Fiber Green Cement Board can reach 255.3 kgf/cm2 and its bulk density can also reach 1.2g/cm3, which both conform the demands of CNS 13777.
The products would lead to warpage due to the high shrinkage of Fiber Green Cement Board. To fill the porous left by the emission of water, wollastonite was added. The results showed that by adding 10 wt% of wollastonite could significantly soothe the shrinkage. As a result, Geopolymeric can easily fabricate Fiber Green Cement Board in a brief way, which displays its market value.
摘要……………………………………………………………………………………i
ABSTRACT……………………………………………………………...……………ii
誌謝………………………………………………………………………………...…iv
目錄……………………………………………………………………………………v
表目錄…………………………...……………………………………………………xi
圖目錄………………………………………………………………..……………...xiii
第一章 緒論…………………………………………………………………………..1
1.1 研究動機…………………………………………………………………….1
1.2 研究目的........…………………………………………………………….…1
第二章 文獻回顧…………..…………………………………………………………3
2.1水泥纖維板產業概況及製程…….………………………………………….3
2.1.1水泥纖維板產業概況………………………………………………...3
2.1.2傳統水泥纖維板之原料……………………………………………...3
2.1.3水泥纖維板的抄造製程……………………………………………...3
2.1.4水泥纖維板的高壓成型製程………………………………………...6
2.1.5水泥纖維板養護製程………………………………………………...7
2.2 無機聚合物............………………………………………………………….8
無機聚合之反應機制........…………………………………………..8
無機聚合物之組成結構……………………………………………..9
2.3 無機聚合之反應材料………………………………………………..…….11
2.3.1 鋁矽酸鹽材料………………………………………………………12
2.3.2鹼金屬氫氧化物溶液……………….………………………………13
2.3.3鹼金屬矽酸鹽溶液………………….………………………………14
2.4無機聚合物之優點............…………………………………………………15
2.4.1 機械性質……………………………………………………………15
2.4.2 耐久性………………………………………………………………16
2.4.3 耐腐蝕性……………………………………………………………17
2.4.4 耐火性………………………………………………………………17
2.4.5 黏結性質……………………………………………………………18
2.4.6 節能減碳…………………………………………………………....18
2.5 無機聚合物之缺點……….……….……...….….…….….….….….……...18
高收縮性質…………………………………………………………18
2.6 影響無機聚合物性質之原因……………………………………………...19
2.6.1 固體原料之影響……………………………………………………19
2.6.2 鹼性溶液之影響……………………………………………………20
2.6.3 攪拌時間之影響…...……………………………………………….20
2.6.4 養護條件之影響……………………………………………………21
2.6.5 填充物之影響………………………………………………………21
2.7 無機聚合物之組成結構…………………………………………………...22
核磁共振光譜分析……………………………………………...….23
第三章 研究方法及步驟……………………………………………………………27
3.1 研究架構……………………………………………………………….…..27
3.2 實驗材料…………………………………………………………………...28
3.2.1 燃煤飛灰………………...……………………….…………………28
3.2.2 爐石粉………………………………………………………………29
3.2.3 變高嶺土……………………………………………………………30
3.2.4 玻璃粉………………………………………………………………32
3.2.5 紙漿…………………………………………………………………34
3.2.6 矽灰石………………………………………………………………34
3.2.7 氫氧化鈉溶液………………………………………………………35
3.2.7 矽酸鈉溶液…………………………………………………………35
3.3 實驗流程…………………………………………………………………...36
3.3.1綠色水泥纖維板前導試驗…………..……………..……….………36
3.3.2綠色水泥纖維板容積比重改善之試驗……………………….……37
3.3.3改善綠色水泥纖維板翹曲之試驗…………………………….……38
3.4實驗參數設計.….………..……………..…………………………………..39
3.4.1額外添加紙漿量之配比..…………..……………………….………40
3.4.2 液固比調整之配比…………………………………………………40
3.4.3 鹼液氫氧化鈉濃度調整之配比……………………………………40
3.4.4改善綠色水泥纖維板容積比重之配比………….…………………41
3.4.4.1 降低爐石粉添加量之配比……………….…………………41
3.4.4.2 變高嶺土取代爐石粉添加量之配比……………….………42
3.4.4.3 玻璃粉取代爐石粉添加量之配比………………….………42
3.4.5改善綠色水泥纖維板翹曲之配比………….………………………43
3.5實驗方法與儀器設備……………..………………………………………..43
3.5.1 製成儀器設備………………………………………………………43
3.5.1.1 攪拌機……………………………………………………….43
3.5.2 材料性質儀器設備…………………………………………………44
3.5.2.1 抗彎強度試驗儀器及方法…………….….…………...……44
3.5.2.2物理性質試驗設備及方法…..………………………………45
3.5.2.3凝結硬化時間測定試驗設備及方法………………..………46
3.4.2.4 黏度試驗設備及方法…………….…………………………46
3.4.2.5 吸水長度變化率測定………………………….……………47
3.4.2.6 pH值測定……………………….…………………………48
3.5.3微結構分析儀器設備……………………………………………….48
3.4.3.1 SEM材料表面特性觀察試驗……………………………….48
3.4.3.2核磁共振光譜儀 (NMR微結構分析)……………………....49
3.5.4防火試驗儀器設備及方法………………………………………….50
第四章 結果與討論…………………………………………………………………51
4.1綠色水泥纖維板之性質…………………………......………………...…...51
4.1.1 工作性-黏度性質…….……………………………………………..51
4.1.1.1額外紙漿添加量對黏度之影響…………….……………….52
4.1.1.2液固比對黏度之影響……………………….……………….52
4.1.1.3氫氧化鈉濃度對黏度之影響…………….………………….53
4.1.2凝結硬化時間….………………………………….………….….….54
4.1.2.1液固比對凝結硬化時間之影響…………………….……….54
4.1.2.2氫氧化鈉濃度對凝結硬化時間之影響…………….……….55
4.1.3抗彎強度….…………………………………….….…………….….56
4.1.3.1額外紙漿添加量對抗彎強度之影響…………….………….56
4.1.3.2液固比對抗彎強度之影響…………………….…………….57
4.1.3.3氫氧化鈉濃度對抗彎強度之影響…………….…………….58
4.1.4物理性質….…………………………………….….…………….….59
4.1.4.1額外紙漿添加量對物理性質之影響…………….………….59
4.1.4.2液固比對物理性質之影響………………….……………….60
4.1.4.3氫氧化鈉濃度對物理性質之影響…………….…………….61
4.1.5小結………………………………………...…….………………….62
4.2改善綠色水泥纖維板容積比重之性質…………………......………...…...63
4.2.1 工作性-黏度性質…….……………………………………………..63
4.2.1.1爐石粉添加量對黏度之影響……………….……………….63
4.2.1.2變高嶺土取代爐石粉添加量對黏度之影響…….………….64
4.2.1.3玻璃粉取代爐石粉添加量對黏度之影響………….……….65
4.2.2凝結硬化時間….……………………………….….…………….….65
4.2.2.1爐石粉添加量對凝結硬化時間之影響……………….…….65
4.2.2.2變高嶺土取代爐石粉添加量對凝結硬化時間之影響.…….66
4.2.2.3玻璃粉取代爐石粉添加量對凝結硬化時間之影響…….….67
4.2.3抗彎強度….…………………………………….….…………….….67
4.2.3.1爐石粉添加量對抗彎強度之影響……………….………….67
4.2.3.2變高嶺土取代爐石粉添加量對抗彎強度之影響……….….68
4.2.3.3玻璃粉取代爐石粉添加量對抗彎強度之影響……….…….69
4.2.4物理性質….…………………………………….….…………….….70
4.2.4.1爐石粉添加量對物理性質之影響……………….………….70
4.2.4.2變高嶺土取代爐石粉添加量對物理性質之影響…….…….71
4.2.4.3玻璃粉取代爐石粉添加量對物理性質之影響………….….71
4.2.5小結……………………………………...……….………………….73
4.3 綠色水泥纖維板特性綜合分析…………………………………………...74
4.3.1 吸水長度變化率 …………………………………………………..74
4.3.2 pH值………………………………………………………………75
4.3.3防火及熱傳導特性………………………………………………….76
4.3.4微結構分析………………………………………………………….79
4.3.4.1 SEM分析………………………... ………………………….79
4.3.4.2 XRD分析…………………………………….……...……….80
4.3.4.3 27Al MAS NMR…………………….….…..…….…….…….80
4.3.4.4 29Si MAS NMR………………………………….…….….….81
4.3.4.5 29Si NMR光譜擬合分析……………………...………….….82
4.3.5改善綠色水泥纖維板翹曲之性質……………………………….…84
第五章 結論與建議………………………………………………………………....86
5.1 結論……………………………………………………………………..….86
5.2 建議………………………………………………………………………...87
參考文獻……………………………………………………………………..………88
方嘉德譯,儀器分析精選本,台中,滄海書局,2000,第16-1-16-32頁。

戴詩潔,2005,高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,國立國立臺北科技大學,台北。

戴于聖,2013,無機聚合綠色水泥之應用開發研究,碩士論文,國立國立臺北科技大學,台北。

李政勳,2010,添加水溶性高分子對無機聚合物特性影響之研究,碩士論文,國立國立臺北科技大學資源工程研究所碩士班,台北。

周永祥,1996,石膏板市場調查台電公司自行設石膏板廠之可行性研究,工研院能資所報告。

陳清齊,2001,赴德國參訪水泥纖維板廠,出國報告,工研院環安中心。

陳清齊,2001,再資源化水泥纖維板之研究,碩士論文,國立國立臺北科技大學材料及資源工程研究所,台北。

陳志賢,2009,含矽質廢棄物之無機聚合物,博士論文,國立成功大學土木研究所博士班,台南。

陳信安,2012,無機聚合技術應用於綠色水泥及綠色混凝土之研究,碩士論文,國立國立臺北科技大學資源工程研究所碩士班,台北。

楊立昌,2014,無機聚合綠色水泥收縮性質與工作性質改善之研究,碩士論文,國立國立臺北科技大學資源工程研究所碩士班,台北。

AbdulRahim R.H., Rahmiati T., Azizli K. A., Man Z., 2015, Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties, Materials Science Forum,vol. 803,pp. 179-184.

Bakharev T., Sanjayan J.G., 2002, Alkali-activated slag concrete: durability in the aggressive environment, Geopolymer 2002 Internationl Conference, Melbourne, Australia.

Chindaprasirt P., Chareerat T., Sirivivatnanon V., 2007, Workability and strength of coarse high calcium fly ash geopolymer”, Cement and Concrete Composite, Vol.29, pp. 224-229.

Cwirzen A., Punkki J., Engblom R., Habermehl-Cwirzen K., 2012, Effects of curing: comparison of optimised alkali-activated PC-FA-BFS and PC concretes, Magazine of Concrete Research, Vol. 66, pp. 315–323.

Davidovits J., 2002, Environmentally driven geopolymer cement applications, Geopolymer 2002 Internationl Conference, Melbourne, Australia.

Davidovits J., 1999, Fire proof geopolymeric cements, Proceedings of Geopolymer”99 Second International Conference, Editors: J. Davidovits, R. Davidovits and C. James, France, pp. 165-170.

Davidovits J., 1988, Geopolymer chemistry and properties, Geopolymer ’88, France, pp. 25-48.
Davidovits J., 1911, Geopolymers : Inorganic polymeric new materials, Journal of Thermal Analysis, vol.37, pp. 1633-1656.

Davidovits J., Comrie D.C., Paterson J.H., 1990, Geopolymer concrete for environmental protection, Concrete, vol. 21, pp. 30-40.

Davidovits J., 2008, Geopolymer chemistry and applications, France: Geopolymer Institute, pp. 61-76.

Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A., Van Deventer J.S.J., 2006, Geopolymer technology : the current state of the art, Journal of Materials Science, Vol. 42, pp. 2917-2933.

Duxson P., Provis J.L., 2008,Designing Precursors for Geopolymer Cements, Journal of the American Ceramic Society, vol. 91, pp. 3864-3869.

Duxson P., Provis J.L., Lukey G.C., Separovic F., Van Deventer J.S.J., 2005, 29Si NMR study of structural ordering in aluminosilicate geopolymer gels, Langmuir, Vol. 21, pp. 3028-3096.

García-Lodeiro I., Fernández-Jiménez A., Blanco M.T., Palomo A., 2008, FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H, Journal of Sol-Gel Science and Technology, vol.45, pp. 63-72.

Geopolymer Institute Home Page,http://www.geopolymer.org/science.html, 1996-2008.

Hajimohammadi A., Provis J. L., Van Deventer J. S. J., 2008, One-Part geopolymer mixes from geothermal silica and sodium aluminate, Industrial and Engineering Chemistry Research, Vol. 47, pp. 9396-9405.

Kaps C., Buchwald A., 2002, Porperty controlling influences on the generation of geopolymer based on clay, Geopolymer 2002 International Conference, Melbourne, Australia.

Kong D.L.Y., Sanjayan J.G., Sagoe-Crentsil K.,2008, Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures, Journal of Materials Science, vol. 43, pp. 824-831.

Komljenović M., baščarević Z., Bradić V., 2010, Mechanical and microstructural properties of alkali-activated fly ash geopolymers , Journal of Hazardous Materials, Vol. 181, pp. 35-42.

Lecomte I., Henrist C., Liégeois M., Maseri F., Rulmont A., Cloots R., 2006, (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement, Journal of the European Ceramic Society, vol. 26, pp. 3789-3797.

Mackenzie K.J.D., Smith M.E., 2008, Multinuclear Solid-State NMR of Inorganic Materials, Oxford;New York:Pergamon, pp. 273.

ProvisJ. L., Yong C.Z., Duxson P., Van Deventer J.S.J., 2009, Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers, Colloids and surfaces A: Physicochemical and Engineering Aspects, vol. 336, pp. 57-63.

Panagiotopoulu C., Kakali G., Tsivilis S., Perraki T., Perraki M., 2010, Synthesis and characterization of slag based geopolymer, Materials Science Forum, vol. 636-637, pp. 155-160.

Provis J. L., Duxson P., Lukey G.C., Separovic F., Kriven W.M., Van Deventer J.S.J., 2005, Modeling speciation in highly concentrated alkaline silicate solutions, Industrial and Engineering Chemistry Research, vol. 44, pp. 8899-8908.

Soleimani M. A., Naghizadeh R., Mirhabibi A. R., Golestanifard F., 2012, Effect of calcination temperature of the kaolin andmolar Na2O/SiO2 activator ratio on physical andmicrostructural properties of metakaolin basedgeopolymers, Iranian Journal of Materials Science & Engineering,vol. 9,pp. 43-51.

Schmücker M., Mackenzie K.J.D., 2005, Microstructure of sodium polysialatesiloxo geopolymer, Ceramics International, vol.31, pp. 433–437.

Singh P.S., Trigg M., Burgar I., Bastow T., 2005, Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR, Materials Science and Engineering A, vol. 396, pp. 392-402.

Sun W., Zhang Y.S., Lin W., Liu Z.Y., 2004, In situ monitoring of the hydration Process of K- PS geopolymer cement with ESEM, Cement and Concrete Research, vol. 34, pp. 935-940.

Teixeira-Pinto A., 2005, Repairing of damaged stone in monuments and stone buildings, Geopolymer: green chemistry and sustainable development solutions, pp. 173-176.

Vickers L., Rickard W.D.A., Van Riessen A., 2014, Strategies to control the high temperature shrinkage of fly ashbased geopolymers, Thermochimica Acta, vol. 580, pp. 20–27

Xu H., Van Deventer J.S.J., 2000, The geopolymerisation of alumino-silicatminerals”, International Journal Minerals Process, vol. 59, pp. 247-266.

Yao X., Zhang Z., Zhua H., Chen Y., 2009, Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry, Thermochimica Acta, Vol. 493, pp. 49-54.

Yip C.K., G. Lukey C., Van Deventer J.S.J., 2005, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, vol. 35, pp. 1688-1697.

Yip C.K., Lukey G.C., Provis J.L., Van Deventer J.S.J., 2008, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, Vol. 38, pp. 554-564.
Zhang Y., Wei S., Chen Q., Chen L., 2007, Synthesis and heavy metal immobilization behaviors of slag based geopolymer, Journal of Hazardous Materials, vol. 143, pp. 206-213.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔