(3.236.222.124) 您好!臺灣時間:2021/05/13 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:高紹偉
研究生(外文):Shao-wei-Kao
論文名稱:片麻岩裂面粗糙特性及其影響因素
論文名稱(外文):Characteristics and Influence factors of Fracture Roughness in Foliated Gneiss
指導教授:王泰典
口試委員:王泰典李宏輝翁祖炘黃燦輝林銘郎
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:葉理角度、力學特性、一般物理指數、異向性
外文關鍵詞:StressDiscontinuitiesFracturesRoughnessJRCPost-peak
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
現況而言,對於中低強度之岩體已有相當程度的瞭解,但是對於變質岩甚至強度較高的高山峻嶺的岩體區,尚需進一步的瞭解,本研究利用一系列岩石力學室內試驗,單軸壓縮試驗、直剪試驗及傳統三軸試驗,針對高強度岩體的峰後性質,探討岩石於破壞後區段的裂面粗糙度變化,藉以瞭解岩石於不同應力狀態下的破壞模式,並利用雷射剖面儀對破壞後試體裂面進行掃描,再藉由經驗公式求取裂面粗糙係數JRC值進行分析。
本文自布洛灣地區9個傾斜鑽孔及4個垂直鑽孔中,取得具不同葉理傾角岩心試體,透過岩石室內試驗探討加載方向與葉理夾角對片麻岩力學特性之影響。試驗結果顯示,各岩心基本物理性質指數包括視比重、體密度、孔隙率及吸水率等皆相近,差異小於2%。單軸壓縮試驗結果所得,單壓強度變化在75.1-80.8 MPa之間,受葉理角度影響不明顯,顯示強度無明顯異向性。超音波波速試驗結果所得,超音波波速變化在2003-4080 m/s之間,受葉理角度影響明顯,顯示超音波波速具有明顯異向性。試體最大軸向應變在0.15-0.45%之間,受葉理角度影響明顯,顯示變形性具有明顯異向性。研究結果顯示,片麻岩強度和變形性之異向行為並不一致。
The geometric roughness in rock mass fractures is influenced by rock mass
deformation, damage and percolation percolation. Barton et al. proposed that joint
roughness coefficient JRC value assess the degree of roughness of the fractures. Most
current methods of JRC value measurement are determined by geometrical ways.
Focusing on rock mechanics laboratory test, this study not only conduct tensile
splitting strength test, uniaxial compression test, and triaxial compression test, rock
fractures obtained under different stress states, also discuss the impact of gneissosity
and confining pressure on rock fracturing plane through changing gneissosity and
maximum loading directions.
Use profilometer was measure the degree of roughness of the fractures . Use Tse
& Curden et al. proposed empirical formula to obtain the value of the joint roughness
coefficient. Evaluate geometry of joint roughness coefficient of the fractures under
different stress states.
Experimental results reveal, which the fractures obtained by tensile splitting
strength test under compression-tension stress state are planar .However, the wall of
fractures are rough, exhibiting saw tooth fractures perpendicular to loading direction.
The fractures from uniaxial compression stress state are irregular and the fracture
walls are rough saw tooth fractures perpendicular to loading direction are also
observable. Under triaxial compression stress state, the fractures change from
irregular to regular as the confining pressure increases, and saw tooth fractures
disappear in the meanwhile.
In order improve fracture surface occurrence of sample describe methods and
accuracy, the development ring of a scanning device with improve fracture surface
occurrence of sample describe methods and accuracy. Expand the image generated
through fracture surface occurrence and distribution of native discontinuities was
portrayed. The results showed that native discontinuities plane and confining pressure
for the crack growth direction and angle having a significant impact.
Through profile on the fractures segmentation, after obtaining different trace
length profile, using the empirical formula calculate on each segment profiles , and
use statistical analysis of the way to get average of JRC profiles of different sizes, and
unfragmented JRC will not have much variation. Then measured by the amount of
laser profiler fractures undulating under different stress states. The results show, rocks
under different stress states fractures, its rough characteristics have differences.
In order to investigate the influence of native rock discontinuities plane, in a
series of rock mechanics testing, adjusting the angle between the discontinuity plane
and the external force is applied. Discussion native discontinuity plane effects on the
relative orientation of rock fractures morphology and roughness characteristics. The
results show, native discontinuities plane in the fractures morphology and roughness
characteristics have an impact, with the stress state and external force is applied and
discontinuities angle change. Maximum and minimum JRC with discontinuity tendency and dip will show vertical and parallel.
摘 要 1
目錄 2
圖目錄 5
表目錄 8
前言 9
1.1 研究動機與目的 9
1.2 研究方法 10
1.3本文內容 11
第二章文獻回顧 13
2.1應力狀態對岩石力學特性的影響 13
2.1.1單軸壓縮試驗之岩石力學特性 13
2.1.2三軸壓縮試驗之岩石力學特性 14
2.1.3拉伸強度之力學特性 15
2.1.4 Jaeger強度異向性 15
2.2岩石的破壞型態 17
2.2.1 破裂面特徵 17
2.2.2裂縫的來源與影響 17
2.3岩石裂面的幾何特性 18
2.3.1粗糙度係數JRC值 18
2.3.2Tse與Cureden之JRC 19
2.3.3以快速傅立葉轉換計算粗糙度係數值 19
2.3.4求取片麻岩破壞後裂面粗糙度 20
第三章 實驗規劃 31
3.1試體來源與試驗類型 31
3.2實驗項目與流程 33
3.2.1一般物理指數試驗 35
3.2.2力學試驗 35
3.3主要實驗設備 37
3.3.1剛性壓力機與輔助試驗系統 37
3.3.2超音波量測系統 38
3.3.3雷射掃描測距系統 38
第四章 實驗結果與討論 50
4.1一般物理指數與力學試驗結果 50
4.1.1基本物理性質試驗 50
4.1.2 巴西人法劈裂試驗 50
4.1.3 單軸壓縮及三軸壓縮試驗 50
4.1.4不同為壓條件下尖峰強度及變形模數 53
4.2完整應力-應變曲線 54
4.2.1葉理角度70° 54
4.2.2葉理角度20° 55
4.3裂面粗糙度 55
4.3.1單軸壓縮試驗 56
4.3.2傳統三軸壓縮試驗 56
4.3.3完整應力路徑PR(Position Residue) 57
第五章 結論與建議 81
5.1結論 81
5.1.1強度異向性 81
5.1.2主應力與葉理角度之關聯 81
5.2建議 82
參考文獻 84
附件一 87
附件二 92
A. Lavrova, A. Vervoort, M. Wevers JALN. Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. Int J Rock Mech Min Sci. 2002.
2. A. Taheri KT. Use of down-hole triaxial apparatus to estimate the mechanical properties of heterogeneous mudstone. Int J Rock Mech Min Sci. 2008.
3. Al-Harthi AA, Faculty. Effect of planar structures on the anisotropy of Ranyah sandstone, Saudi Arabia. Eng Geol. 1998.
4. Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk CS, Prongmanee N. Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Constr Build Mater. 2014.
5. Asadi M, Bagheripour MH. Modified criteria for sliding and non-sliding failure of anisotropic jointed rocks. Int J Rock Mech Min Sci. 2015.
6. Behnam Yazdani Bejarbaneh, Danial Jahed Armaghani MFMA. Strength characterisation of shale using Mohr–Coulomb and Hoek–Brown criteria. Measurement. 2015.
7. Cabalar, Kemal Dulundu KT. Strength of various sands in triaxial and cyclic direct shear tests. Eng Geol. 2013;156:92–102.
8. CHEN Yun-ping(陈运平), WANG Si-jing(王思敬) WE. Continuous query scheduler based on operators clustering. J Cent South Univ Technol (Engl Ed). 2008.
9. Dominic Tremblay RS and MA. a Constitutive Model To Predict the Hydromechanical Behaviour of Rock Joints. Proc OttawaGeo2007 Diam Jubil 60th Can Geotech Conf 8th Jt GCS/IAH-CNC Groundw Conf. 2007.
10. E. Tuncay RU. Relation between Kaiser effect levels and pre-stresses applied in the laboratory. Int J Rock Mech Min Sci. 2008.
11. Enlong Liu SH. Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Eng Geol. 2012.
12. FREng JAH. Engineering Rock Mechanics Part2: Illustrative Worked Examples. Engineering. 2000;
13. G.G. Gonzaga, M.H. Leite RC. Determination of anisotropic deformability parameters from a single standard rock specimen. Int J Rock Mech Min Sci. 2008.
14. Ghazvinian A, Hadei MR. Effect of discontinuity orientation and confinement on the strength of jointed anisotropic rocks. Int J Rock Mech Min Sci. 2012.
15. Ghazvinian A, Vaneghi RG, Hadei MR, Azinfar MJ. Shear behavior of inherently anisotropic rocks. Int J Rock Mech Min Sci. 2013.
16. Goodman RE. Introduction to Rock Mechanics, 2nd Edition. 1989.
17. Haimson B. Consistent trends in the true triaxial strength and deformability of cores extracted from ICDP deep scientific holes on three continents. Tectonophysics. 2011.
18. Han SQY& HWJ& YSL& LJ. Experimental Investigation on Mechanical Behavior of Coarse Marble Under Six Different Loading Paths. Exp Mech. 2011.
19. Hatheway a. W. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; 1974-2006. Environ Eng Geosci. 2009.
20. Hoek E. Fracture of Anisotropic Rock. J South African Inst Min Metall. 1964.
21. Hoek E. Strength of jointed rock masses. Geotechnique. 1983.
22. Hudson JA. Engineering Rock Mechanics: An Introduction to the Principles. Appl Mech Rev. 2002.
23. J. Arzúa, L.R. Alejan GW. Strength and dilation of jointed granite specimens in servo-controlled triaxial tests. Int J Rock Mech Min Sci. 2014;69:93–104.
24. Jing L, Nordlund E, Stephansson O. An experimental study on the anisotropy and stress-dependency of the strength and deformability of rock joints. Int J Rock Mech Min Sci. 1992.
25. Kahraman S, Alber M. Triaxial strength of a fault breccia of weak rocks in a strong matrix. Bull Eng Geol Environ. 2008.
26. Kittitep Fuenkajorn DP. Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Eng Geol. 2010.
27. Koichi Akai KY and MA. 結晶片岩的構造異向性相關實驗的研究. 1969.
28. Ksenia Bisnovat , Yossef H. Hatzor, Harold J. Vinegar, Scott V. Nguyen, Vyacheslav Palchik SF. Mechanical and petrophysical behavior of organic-rich chalk from the Judea Plains, Israel. Mar Pet Geol. 2015.
29. Minsu Cha, Gye-Chun Cho and JCS. Long-wavelength P-wave and S-wave propagation in jointed rock masses. Geophysics. 2009.
30. Nasseri MH, Rao KS, Ramamurthy T. Failure mechanism in schistose rocks. Int J rock Mech Min Sci Geomech Abstr. 1997.
31. R. Gu UO. Numerical investigation of unstable rock failure in underground mining condition. Comput Geotech. 2015.
32. Rajendra P. Tiwari KSR b. Post failure behaviour of a rock mass under the influence of triaxial and true triaxial confinement. Eng Geol. 2006.
33. Reik G, Zacas M. Strength and deformation characteristics of jointed media in true triaxial compression. Int J Rock Mech Min Sci. 1978.
34. Ross A. Stirling, David J. Simpson CTD. The application of digital image correlation to Brazilian testing of sandstone. Int J Rock Mech Min Sci. 2013.
35. Saeidi O, Rasouli V, Vaneghi RG, Gholami R, Torabi SR. A modified failure criterion for transversely isotropic rocks. Geosci Front. 2014.
36. Saroglou H, Tsiambaos G. A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci. 2008.
37. Sheng-Qi Yang, Xiang-Ru Liu H-WJ, State. Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Int J Rock Mech Min Sci. 2013.
38. Shuai Heng, Yingtong Guo, Chunhe Yang , Jack J.K. Daemen ZL. Experimental and theoretical study of the anisotropic properties of shale. Int J Rock Mech Min Sci. 2015.
39. Simon R. Estimation of post-peak behaviour of brittle rocks using a constitutive model for rock joints. 56th Can Geotech Conf. 2003.
40. Sjoberg J. Estimating rock mass strength using Hoek-Brown failure criterion and rock mass classification. 1997.
41. T.M. Roberts MT. Acoustic emission monitoring of fatigue crack propagation. 2003.
42. Vutukuri MSMUKKDKNVS. In-situ Stress Determination By Acoustic Emission Technique. Int J Rock Mech Min Sci. 1997.
43. Xin-zhe, Li, Wang Geng-feng CL. Test Research on Influence of Water and Mineral Composition on Physical and Mechanical Properties of Phyllite. Appl Mech Mater. 2014.
44. Yong Ming Tien MCK. A failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci. 2001.
45. Z.H. Chen, L.G. Tham HX. Experimental and numerical study of the directional dependency of the Kaiser effect in granite. Int J Rock Mech Min Sci. 2007.
46. Zhang XP, Wong LNY, Wang SJ, Han GY. Engineering properties of quartz mica schist. Eng Geol. 2011.
47. 李翰明. 岩坡傾倒破壞之研究-以台14線公路為例. 2003;
48. 福田光正. 岩質の程度と弾性波伝播速度. J Chem Inf Model. 2013;53(9):1689–99.
49. Introduction to rock mechanics. Int J Rock Mech Min Sci Geomech Abstr. 1989.
50. 盧張其杰, 不同應力狀態片麻岩破裂面形態與裂面粗糙度探討, 2014
51. 林京翰, 強硬岩石峰後弱化現象受葉理角度及圍壓影響探討, 2015
52. 鄭富書,林銘郎,林鴻州, 脆性材料之裂面形態及機制初探 , 2002
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔