跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓剛甫
研究生(外文):Cho Kangfu
論文名稱:第五代通訊系統之帶通濾波器與 寬頻低雜訊放大器之設計
論文名稱(外文):Design of Bandpass Filter for Fifth Generation Communication System and Wideband LNA
指導教授:王紳
口試委員:張繼禾蔣孟儒
口試日期:2016-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:第五代通訊系統、IPD(Integrated Passive Device)、CMOS、濾波器、環型、電阻式回授、源極電感、低雜訊放大器
外文關鍵詞:Fifth-Generation Mobile CommunicationIPD(Integrated Passive Device)CMOSfilterring typeresistive feedbackinductive peakinglow noise amplifier.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:169
  • 收藏至我的研究室書目清單書目收藏:0
現今的無線移動式通訊系統正往第五世代通訊系統發展(Fifth-Generation Mobile Communication),RF前端電路為首要的前端電路。基於目前主要研究方向為28/39GHz之頻段,於本篇論文之第二章中介紹了雙頻切換式帶通濾波器,使用了GIPD/0.18umCMOS製程製作。因傳統之帶通濾波器基於CMOS製程金屬厚度較薄,相比GIPD製程損耗較大,所以採用了GIPD製程作為帶通濾波器,其優點為損耗較小,最後搭配上CMOS開關達成28/39GHz之雙頻切換式帶通濾波器。其損耗在28/39GHz分別為4.5/.4.7-dB,其隔離度為35/30.1-dB,最後其晶片面積為5.4mm2。

現今無線通訊之頻段非常多,若要為其各個頻帶製作其對應頻段電路,則成本非常之高。所以本篇論文製作了一個寬頻放大器,其頻帶包含了0.6~5.8 GHz。於第三章中,使用了0.18m製程製作了寬頻低雜訊放大器(Wideband Low Noise Amplifier),其工作頻率為0.6~5.8GHz,其最高增益為11.5dB,雜訊為4.7dB,IIP3為 1.82,最後晶片面積為0.8 mm2。
Todays wireless mobile communication system is to develop a fifth-generation communication systems that RF front-end circuit of the primary front-end circuit. Based on the current main research directions for 28 / 39GHz of the band, in the chapter two of this paper we introduce dual switchable bandpass filter was used GIPD / 0.18-m CMOS process. Because tradition bandpass filter based on thin metal CMOS process, the loss large than GIPD process, so using GIPD process as a band-pass filter, the advantage of a smaller loss, reached the final with the CMOS switch 28 / 39GHz the dual switchable bandpass filter. Its loss in the 28 / 39GHz respectively 4.5 / 4.7-dB, its isolation is 35 / 30.1-dB, which finally die area of 5.4mm2.

Todays wireless communications band are too many. In order to make their respective bands corresponding band circuits which are very high cost. Therefore, this paper produced a broadband amplifier which using feedback resistors, and inductors peaking structure, which includes the band 0.6~5.8 GHz. In the third chapter, using UMC 0.18-m process produced a wideband low-noise amplifier, the operating frequency of 0.6~5.8GHz, its highest gain of 11.5dB, noise is 4.7dB, and IIP3 1.82 for the final wafer area of 0.8 mm2.
摘 要 i
Abstract ii
誌 謝 iv
Table of Content v
List of Figure vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 List of Contribution 2
1.3 Thesis Organization 3
Chapter 2 A CMOS/IPD Switchable 28/39-GHz Bandpass Filter 4
2.1 Introduction 4
2.2 Circuit Design 7
2.3 Implementation and Measurement 23
2.4 Summary 29
Chapter 3 A CMOS 0.6~5.8GHz Wideband LNA Using Resistor Feedback 30
3.1 Introduction 30
3.2 Circuit Design 32
3.3 Implementation and Measurement 38
3.4 Summary 46
Chapter 4 Conclusion 47
Reference 48
[1]F. Gutierrez, S. Agarwal, K. Parrish and T. S. Rappaport, "On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems," in IEEE Journal on Selected Areas in Communications, vol. 27, no. 8, pp. 1367-1378, October 2009.
[2]Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," in IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, June 2011.
[3]T. S. Rappaport, E. Ben-Dor, J. N. Murdock and Y. Qiao, "38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications," 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, 2012, pp. 4568-4573.
[4]H. Zhao et al., "28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city," 2013 IEEE International Conference on Communications (ICC), Budapest, 2013, pp. 5163-5167.
[5]M. Samimi et al., "28 GHz Angle of Arrival and Angle of Departure Analysis for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City," Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, Dresden, 2013, pp. 1-6.
[6] ‘Samsung Newsroom’, http://global.samsungtomorrow.com/?p=24093 accessed
13 May 2013
[7]P. I. Mak and R. P. Martins, "A 0.46-mm2 4-dB NF Unified Receiver Front-End for Full-Band Mobile TV in 65-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 1970-1984, Sept. 2011.
[8]S. K. Hampel, O. Schmitz, M. Tiebout, K. Mertens and I. Rolfes, "9-GHz Wideband CMOS RX and TX Front-Ends for Universal Radio Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1105-1116, April 2012.
[9]Yu Cao et al., "Frequency-independent equivalent-circuit model for on-chip spiral inductors," in IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 419-426, Mar 2003.
[10]B. Yang, E. Skafidas and R. J. Evans, "Design of 60 GHz millimetre-wave bandpass filter on bulk CMOS," in IET Microwaves, Antennas & Propagation, vol. 3, no. 6, pp. 943-949, September 2009.
[11]Cheng-Ying Hsu, Huey-Ru Chuang and Chu-Yu Chen, "Design of 60-GHz millimeter-wave CMOS RFIC-on-Chip bandpass filter," Microwave Conference, 2007. European, Munich, 2007, pp. 672-675.
[12]C. Y. Hsu, C. Y. Chen and H. R. Chuang, "A 60-GHz Millimeter-Wave Bandpass Filter Using 0.18-m CMOS Technology," in IEEE Electron Device Letters, vol. 29, no. 3, pp. 246-248, March 2008.
[13]J. Brinkhoff and F. Lin, "Integrated Filters for 60 GHz Systems on CMOS," Radio-Frequency Integration Technology, 2007. RFIT 007. IEEE International Workshop on, Rasa Sentosa Resort, 2007, pp. 154-157.
[14]Sung Tae Choi, Ki Seok Yang, K. Tokuda and Yong Hoon Kim, "A V-band planar narrow bandpass filter using a new type integrated waveguide transition," in IEEE Microwave and Wireless Components Letters, vol. 14, no. 12, pp. 545-547, Dec. 2004.
[15]K. Nishikawa, T. Seki, I. Toyoda and S. Kubota, "Compact 60-GHz LTCC Stripline Parallel-coupled Bandpass Filter with Parasitic Elements for Millimeter-wave System-on-Package," 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HI, 2007, pp. 1649-1652.
[16]J. H. Lee, S. Pinel, J. Laskar and M. M. Tentzeris, "Design and Development of Advanced Cavity-Based Dual-Mode Filters Using Low-Temperature Co-Fired Ceramic Technology for V-Band Gigabit Wireless Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1869-1879, Sept. 2007.
[17]Hong-Teuk Kim, Jae-Hyoung Park, Yong-Kweon Kim and Youngwoo Kwon, "Low-loss and compact V-band MEMS-based analog tunable bandpass filters," in IEEE Microwave and Wireless Components Letters, vol. 12, no. 11, pp. 432-434, Nov. 2002.
[18]H. Y. Chung, H. K. Chiou, Y. C. Hsu, T. Y. Yang and C. L. Chang, "Design of Step-Down Broadband and Low-Loss Ruthroff-Type Baluns Using IPD Technology," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 6, pp. 967-974, June 2014.
[19]S. Wang, "A low-phase-noise ka-band push-push voltage-controlled oscillator using CMOS/ glass-integrated passive device technologies," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 9, pp. 1456-1462, Sept. 2014.
[20]H. K. Chen, Y. C. Hsu, T. Y. Lin, D. C. Chang, Y. Z. Juang and S. S. Lu, "CMOS wideband LNA design using integrated passive device," Microwave Symposium Digest, 2009. MTT 09. IEEE MTT-S International, Boston, MA, 2009, pp. 673-676.
[21]H. c. Lu, C. s. Yeh and S. a. Wei, "Miniaturised 60 GHz rectangular ring bandpass filter in 90 nm CMOS technology," in Electronics Letters, vol. 47, no. 7, pp. 448-450, March 31 2011.
[22]Hsin-Chia Lu, Chih-Chao Chang and Jia-Wei Chen, "A dual-mode rectangular ring bandpass filter with transmission zeros on LTCC," 2008 Asia-Pacific Microwave Conference, Macau, 2008, pp. 1-4.
[23]L. Su and C. K. C. Tzuang, "A Narrowband CMOS Ring Resonator Dual-Mode Active Bandpass Filter With Edge Periphery of 2% Free-Space Wavelength," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1605-1616, June 2012.
[24]S. Wang and W. J. Lin, "A 10/24-GHz CMOS/IPD Monopulse Receiver for Angle-Discrimination Radars," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 10, pp. 2999-3006, Oct. 2014.
[25]Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger and F. Xu, "Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications," in IEEE Communications Magazine, vol. 50, no. 2, pp. 122-130, February 2012.
[26]C. Hoymann, W. Chen, J. Montojo, A. Golitschek, C. Koutsimanis and X. Shen, "Relaying operation in 3GPP LTE: challenges and solutions," in IEEE Communications Magazine, vol. 50, no. 2, pp. 156-162, February 2012.
[27]H.-F. Leung, and H.-C. Luong, “A 1.2-6.6 GHz LNA using transformer feedback for wideband input matching and noise cancelation in 0.13 µm CMOS,” IEEE Radio Frequency integrated Circuits Symposium, pp. 17-20, 2012.
[28]K. Jusung, and S. -M. Jose, “Wideband inductorless balun-LNA Employing feedback for low-power low-voltage applications,” IEEE Trans. on Microw. Theory and Tech., vol. 60, no. 9, Sep. 2012.
[29]K. Jusung, H. Sebastian, and S.-M. Jose, “Wideband common gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization,” IEEE Trans. on Microw. Theory and Tech., vol. 58, no. 9, Sep. 2010.
[30]K.-H. Yang, M.-C. Kuo, T.-C. Yan, and C.-N. Kuo, “A 1.3 GHz-5.3 GHz wideband, high linearity balun low noise amplifier,” in Proc. of IEEE Asia-Pacific Microwave Conf., pp. 506-509, 2011.
[31]R.-L. Wang, S.-C. Chen, C.-L. Huang, C.-H. Liu, and Y.-S. Lin, “2-6 GHz current-reused LNA with transformer-type inductors,” in Proc. of Asia-Pacific Microwave Conference, 2008.
[32]K.-H. Chien and H.-K. Chiou, “A 0.6–6.2 GHz wideband LNA using resistive feedback and gate inductive peaking techniques for multiple standards application,” in Proc. of Asia-Pacific Microwave Conference, Seoul, pp. 688-690, 2013.
[33]M. Matsuo, H. Yabuki and M. Makimoto, "Dual-mode stepped-impedance ring resonator for bandpass filter applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7, pp. 1235-1240, Jul 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊