(3.236.214.19) 您好!臺灣時間:2021/05/06 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡庭以
研究生(外文):Ting-yi Tsai
論文名稱:互補式金屬氧化物雙推式壓控振盪器與可調式延遲線之設計
論文名稱(外文):Design of CMOS Push-Push VCO and Variable Delay Line
指導教授:王紳
口試委員:蔣孟儒張繼禾王紳
口試日期:2016-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:W頻帶、雙推式壓控振盪器、Ku頻帶、可調式延遲線
外文關鍵詞:W-Bandpush-push VCOKu-Bandvariable delay lines
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要分成兩大部份,皆利用0.18微米互補式金屬氧化物半導體(CMOS)製程,提出一個操作在W頻帶的雙推式壓控振盪器及一個操作在Ku頻帶的可調式延遲線。本篇論文提出一個操作在Ku頻帶的可調式延遲線,使用以互補式金屬耦合線(CCS CL)為基礎設計的3 dB方向耦合器,並且利用改變反射類型(reflection type)電路的負載組合型態,將原本適合操作在低頻的延遲線提升到方便於高頻操作,並且使用主動元件補償的方式,來降低入射損耗。本篇論文提出一個操作在W頻帶的雙推式壓控振盪器,採用交叉耦合對提供負電阻抵銷LC tank在振盪中所產生的衰減,基於電晶體之fmax使得振盪器的基頻震盪頻率受到限制,為了要改善此缺點以利於設計至更高頻的頻段,故使用雙推式振盪器(Push-Push)使其輸出為二倍頻(2f0),並且透過採用傳輸線線段來使額外的交叉耦合對的導納產生轉換,可以將基頻的振盪頻率越接近電晶體的fmax,進而可以有效地使振盪頻率增加。
This paper is divided into two parts, both of them using 0.18 m CMOS process, and one is a push-push VCO operated in W-band and the other is a variable delay line operated in the Ku band. A variable delay line operated in the Ku-band is proposed. Use a complementary-conducting-strip coupled-line (CCS CL) to design a 3 dB directional coupler. Furthermore, by varying load combination patterns of the reflection type circuit can enhance the operating frequency of the delay line from low frequency to high frequency. Moreover, use the additional active compensation to reduce the insertion loss. A push-push VCO operated in W-band is proposed with cross-coupled to provide negative resistance, and cancel out the attenuation generated by LC tank in the oscillations. Because of the fmax of transistor make the fundamental oscillation frequency of the oscillator be restricted. In order to facilitate to design higher frequency band and improve abovementioned shortcoming, so use the push-push type oscillator that the output can be the second harmonic (2f0). Besides, using the transmission line segments make the extra cross-coupled pair producing admittance transforming. Therefore, the oscillation frequency of the fundamental frequency can be closer to fmax of the transistor and then can effectively increase the oscillation frequency.
Table of Content

摘 要 i
Abstract ii
誌 謝 iv
Table of Content v
List of Tables vii
List of Figure viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 List of Contribution 3
1.3 Organization of This Thesis 4
Chapter 2 Design and Application of the Synthetic Coupled-Line 5
2.1 Analysis of Complementary-Conducting-Strip Transmission Line in CMOS Process 5
2.2 Analysis of Synthetic Coupled-Line 8
2.3 CCS CL Based Directional Coupler 11
2.3.1 Coupled Transmission Line Basic Theory 11
2.3.2 Analysis of Single-Section Directional Coupler 14
2.3.3 CCS CL Based Directional Coupler Design Results 18
2.4 Summary 22
Chapter 3 Variable Delay Line 23
3.1 Introduction 23
3.2 Reflection Type Theory 25
3.3 Active Compensation for the VDL Circuitry 27
3.4 Implementation and Measurement 30
3.5 Summary 34
Chapter 4 W-Band VCO with Innovative Push-Push Topology 35
4.1 Introduction 35
4.2 Oscillator Analysis 37
4.3 Circuit Design 39
4.4 Implementation and Measurement 41
4.5 Summary 44
Chapter 5 Conclusion 46
Reference 48
Reference

[1]A. Dzvonkovskaya, K. W. Gurgel, H. Rohling, and T. Schlick, “Low power high frequency surface wave radar application for ship detection and tracking,” in Proc. Int. Radar Conf., Rome, Italy, Sep. 2008, pp. 627-632.
[2]F. S. Marzano, S. Barbieri, E. Picciotti, and S. Karlsdóttir, “Monitoring sub-glacial volcanic eruption using C-band radar imagery,” IEEE Trans. on Geosci. Remote Sens., vol. 48, no. 1, pp. 403-414, Jan. 2010.
[3]H. Veenstra, M. Notten, “60GHz quadrature doppler radar transceiver in a 0.25μm SiGe BiCMOS technology,” Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European, pp. 246-249.
[4]P. Zhao, H. Veenstra, and J. R. Long, “A 24 GHz pulse-mode transmitter for short-range car radar,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2007, pp. 425-428.
[5]C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Micro. Theo ryand Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[6]M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Design of Synthetic Quasi-TEM Transmission Line for CMOS Compact Integrated Circuit,” IEEE Trans. Microw. Theory and Tech., vol. 55, no. 12, part 1, pp. 2512-2520, Dec. 2007.
[7]S. Wang, H.-S. Wu, C.-H. Chang and C.-K. C. Tzuang, “Modeling and Suppressing Substrate Coupling of RF CMOS FMCW Sensor Incorporating Synthetic Quasi-TEM Transmission Lines,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp. 1939-1942.
[8]B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp. 1352-1360, Aug. 2000.
[9]E. M. Rutz and J. E. Dye, “Frequency translation by phase modulation,” IRE WESCON Conv. Rec., pt. I, pp. 201-207, 1957.
[10]J.-D. Fredrick, Y. Wang, and Tatsuo Itoh, “A new circuit topology for continuous group delay synthesis,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 3, pp. 85- 87, Mar. 2002.
[11]S. Lucyszyn and I.-D. Robertson, “Analog reflection topology building blocks for adaptive microwave signal processing applications,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 3, pp. 601-611, Mar. 1995.
[12]Pei-Chun Ko, Chao-Wei Wang, Hsien-Shun Wu, and ChingKuang C. Tzuang, "A 87 pico-second CMOS variable delay line incorporating the parallel-resonator loads in K-band," Digest of the 2011 International Microwave Symposium, TU2G-2, Baltimore, June 5~10, 2011.
[13]H. H. Hsieh and L. H. Lu, “A V-band CMOS VCO with an admittance-transforming cross-coupled pair,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1689-1696, Jun. 2009.
[14]R. C. Lin et al., “A 63 GHz VCO using a standard 0.25 m CMOS process,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig, Feb. 2004, pp. 446-447.
[15]P. C. Haung et al., “A 114GHz VCO in 0.13 m CMOS technology,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig, Feb. 2005, pp. 404-406.
[16]C. Cao,Y. Ding, and K. O. Kenneth, “A 50-GHz phase-locked loop in 0.13 m CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1649-1656, Aug. 2007.
[17]H. C. Chiu and C. P. Kao, “A wide tuning range 69 Ghz push-push VCO using 0.18 m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 97-99, Feb. 2010.
[18]M. Fujishima et al., “98mW 10 Gbps wireless transceiver chipset with D-band CMOS circuits,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2273-2284, Oct. 2013.
[19]L. M. Franca-Neto, R. E. Bishop, and B. A. Bloechel, “64 GHz and 100 GHz VCOs in 90 nm CMOS using optimum pumping method,” in Proc. IEEE ISSCC Dig., Feb. 2004, pp. 444-538.
[20]Z.-M. Tsai, C.-S. Lin, C. F. Huang, J. G. J. Chern, and H. Wang, “A fundamental 90-GHz CMOS VCO using new ring-coupled quad,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 226-228, Mar. 2007.
[21]K. Ishibashi, M. Motoyoshi, N. Kobayashi, and M. Fujishima, “76 GHz CMOS voltage-controlled oscillator with 7% frequency tuning range,” in Symp. VLSI Circuits Dig., Jun. 2007, pp. 176-177.
[22]B. Heydari, M. Bohsali, E. Adabi, and A. M. Niknejad, “Millimeter-wave devices and circuits block up to 104 GHz in 90 nm CMOS,” IEEE J. Solid-States Circuits, vol. 42, no. 12, pp. 2893-2903, Dec. 2007.
[23]E. Laskin, M. Khanpour, R. Aroca, K. W. Tang, P. Garcia, and S. P. Voinigescu, “A 95 GHz receiver with fundamental-frequency VCO and static frequency divider in 65 nm digital CMOS,” in Proc. IEEE ISSCC Dig., Feb. 2008, pp. 180-605.
[24]H. M. Cheema, R. Mahmoudi, M. A. T. Sanduleanu, and A. van Roermund, “A 44.5 GHz differentially tuned VCO in 65 nm bulk CMOS with 8% tuning range,” in Proc. IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 2008, pp. 649-652.
[25]J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.
[26]Chang, Yu-Hsin, and Yen-Chung Chiang. "A V-band push-push VCO with wide tuning range in 0.18 µm CMOS process.“ Microwave Conference (EuMC), 2014 44th European. IEEE, 2014.
[27]Chang, Yu-Hsin, Yen-Chung Chiang, and Ching-Yuan Yang. “A V-Band Push-Push VCO With Wide Tuning Range Using CMOS Process”, IEEE Microw. Wireless Compon. Lett., vol. 25, pp. 115-117, Feb. 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔