(3.238.96.184) 您好!臺灣時間:2021/05/10 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱證維
研究生(外文):Cheng-Wei Chiu
論文名稱:射頻能量擷取的轉換效率極限及達成此最大值的最佳整流天線架構
論文名稱(外文):Maximum Achievable Power Conversion Efficiency Obtained Through Optimized Rectenna Structures for RF Energy Harvesting
指導教授:陳晏笙
口試委員:廖文照馬自莊陳士元
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:射頻能量擷取、匹配網路、最佳化、整流天線、整流電路
外文關鍵詞:Energy harvestingimpedance matchingoptimization methodswireless power transmissionrectennasrectifiers.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
整流天線發展數十年,眾多文獻都在追求高轉換效率(Power Conversion Efficiency, PCE) 的整流天線。但由於整流天線所能達到的最大轉換效率(轉換效率的理論上限)至今仍未被提出,因此各篇文獻在比較轉換效率時,缺乏一個客觀的比較基準來評估轉換效率的好壞。有鑒於此,本研究針對輸入功率區間為‒20 dBm到0 dBm,歸納出整流天線所能達到的最大轉換效率,適用於環境背景的射頻能量擷取。在整流電路的設計上,本論文提出一套有系統的設計方法,使整流電路的轉換效率能夠達到最大化,其中,影響整流電路轉換效率的參數有操作頻率、天線接收功率、整流電路的結構以及電路原件參數,此外,眾多研究在改善低入射功率整流天線轉換效率的做法都是著重於天線設計,目的是為了使天線能夠擷取到更多的射頻能量。然而,本研究發現,在低入射功率的情境中,若要最大化轉換效率,除了將整流天線各級的參數最佳化之外,在結構上還必須將匹配網路移除,才能使轉換效率逼近理論上限(Theoretical limit of PCE)。最後,依照本論文所提的最佳化方法,我們設計出一個操作在2.45 GHz的最佳整流天線,轉換效率在輸入功率–10 dBm及0 dBm分別為50 %和63 %,量測結果非常接近理論上限。
High-efficiency rectennas for radio-frequency (RF) energy harvesting have been studied for decades, but most of the literature straightforwardly applies the rectenna aiming at dedicated RF sources to this situation, even though the level of input power is significantly different. Since previous studies address antenna design collecting more ambient RF power, the improvement of power conversion efficiency (PCE) has emerged in a scattered way because the theoretical limits of PCE have not yet been characterized, and the optimal rectenna structure approaching such maximum PCE is still uninvestigated. In this paper, we characterize the performance limits of rectennas with input power ranging from ‒20 dBm to 0 dBm, proposing optimal rectenna design demonstrating the maximum PCE. The maximum achievable PCE is cast into a mathematical programming problem; solving this optimization model clarifies the effect of design factors including operational frequencies, rectifier configurations, and parameterization. To achieve the maximum PCE, our investigation shows that the optimal rectenna design should not only optimize those design factors but also eliminate the matching circuit between an antenna and a rectifier for ultralow-power conditions. The resultant PCE at 2.4 GHz is 50 % and 63 % at –10 dBm and 0 dBm, closely approaching the theoretical bounds.
摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究現況 2
1.3 研究動機 3
1.4 論文之章節大綱 4
第二章 轉換效率的理論上限 6
2.1 理論背景 6
2.2 最大化平均轉換效率 8
2.3 理論分析 9
2.4 轉換效率的理論上限與整流天線的設計準則
13
第三章 匹配網路的損耗 21
3.1 理論背景 21
3.2 匹配網路的損耗分析 25
第四章 最佳整流天線結構 34
4.1最佳天線結構 34
4.2實驗與驗證 39
第五章 結論 45
5.1 總結 45
5.2 研究貢獻 46
5.3 未來可行之研究方向 47
參考文獻 48




表目錄
表2.1 整流電路之最佳電路元件參數 13
表3.1 匹配網路之散色參數模擬值 25
表3.2 匹配網路之散色參數量測值 26




圖目錄
圖2.1 整流天線之電路架構 6
圖2.2 整流電路結構(a)半波整流 (b)全波二倍壓 (c) Greinacher倍壓電路 (d) Dickson倍壓電路 7
圖2.3 半波整流電路之等效電路模型 9
圖2.4整流電路之轉換效率 (a) 900 MHz 14
(b)1.8 GHz 14
(c) 2.45 GHz 15
(d) 5.8 GHz 16
圖2.5 最佳半波整流電路之轉換效率 17
圖2.6 整流天線轉換效率比較 (a) 900 MHz 18
(b) 1.8 GHz 19
(c) 2.45 GHz 19
(d) 5.8 GHz 20
圖3.1 匹配網路結構 (a)集總元件 (b)單殘段傳輸線 (c)雙殘段傳輸線 22
圖3.2 最佳半波整流電路之輸入阻抗(a)900 MHz 22
(b)1.8 GHz 23
(c)2.45 GHz 23
(d) 5.8 GHz 24
圖3.3 半波整流電路含匹配網路之反射係數
(a) 900 MHz 27
(b) 1.8 GHz 27
(c) 2.45 GHz 28
(d) 5.8 GHz 28
圖3.4 匹配網路之功率增益 (a) 900 MHz 29
(b) 1.8 GHz 29
(c) 2.45 GHz 30
(d) 5.8 GHz 30
圖3.5 2.45 GHz之G_p等高線圖
(a)集總元件匹配網路 32
(b)單殘段傳輸線匹配網路(FR4) 32
(c)雙殘段傳輸線匹配網路(Duroid 5880) 32
圖4.1 電感性之耦合饋入天線 35
圖4.2 天線之對照組 (a)微帶天線 36
(b)八木天線(正面) 36
(c)八木天線(反面) 37
圖4.3 天線效能比較 (a)反射係數 37
(b)輻射效率 38
圖4.4 最佳整流天線
(a)天線幾何參數 (b)整流電路布局 40
圖4.5 量測架構示意圖 41
圖4.6 最佳整流天線之轉換效率量測結果 41
圖4.7 整流天線架構為半波整流
(a)反射係數 (b)轉換效率 42
圖4.8 整流天線架構為全波二倍壓
(a)反射係數 (b)轉換效率 43
圖4.9 整流天線架構為全波四倍壓
(a)反射係數 (b)轉換效率 44
[1]V. T. Nguyen, S. H. Kang, J. H. Choi, and C. W. Jung, “Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications,” IEEE Trans. Consumer Electron., vol. 61, no. 2, pp. 160–166, May 2015.
[2]H.-D. Lang, A. Ludwig and C. D. Sarris, “Convex optimization of wireless power transfer systems with multiple transmitters,” IEEE Trans. Antennas Propag., vol. 62, no. 9, pp. 4623–4636, Sept. 2014.
[3]M. Zargham and P. G. Gulak, “Maximum achievable efficiency in near-field coupled power-transfer systems,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 228–245, June 2012.
[4]I. Yoon and H. Ling, “Investigation of near-field wireless power transfer under multiple transmitters,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 662–665, 2011.
[5]C. Song et al., “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3486–3495, Aug. 2015.
[6]H. Sun, Y.-X. Guo, M. He, and Z. Zhong, “A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 918–921, 2013.
[7]F. Zhang, F.-Y. Meng, J.-C. Lee, and Q. Wu, “Study of a novel compact rectenna for wireless energy harvesting,” IEEE International Wireless Symposium, Beijing, China, Apr. 2013, pp. 1–4.
[8]F. Congedo, G. Monti, L. Tarricone, and V. Bella, “A 2.45-GHz Vivaldi rectenna for the remote activation of an end device radio node,” IEEE Sensors Journal, vol. 33, no. 9, pp. 3454–3461, Sept. 2013.
[9]M.-J. Nie, X.-X. Yang, G.-N. Tan, and B. Han, “A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 986–989, 2015.
[10]M. Arrawatia, M. S. Baghini, and G. Kumar, “Broadband bent triangular omnidirectional antenna for RF energy harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 36–39, 2016.
[11]S. D. Assimonis, S.-N. Daskalakis, and A. Bletsas, “Sensitive and efficient RF harvesting supply for batteryless backscatter sensor networks,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 4, pp. 1327–1338, Apr. 2015.
[12]J. A. Hagerty, et al., “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 1014–1024, Mar. 2004.
[13]V. Kuhn, C. Lahuec, F. Seguin, and C. Person, “A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 5, pp. 1768–1778, May 2015.
[14]K. Niotaki et al., “A compact dual-band rectenna using slot-loaded dual band folded dipole antenna,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1634–1637, 2013.
[15]R. Scheeler, S. Korhummel, and Z. Popovic, “A dual-frequency ultralow-power efficient 0.5-g rectenna,” IEEE Microw. Mag., vol. 15, no. 1, pp. 109–114, Jan. 2014.
[16]P. Lu, X.-S. Yang, J.-L. Li and B.-Z. Wang, “A compact frequency reconfigurable rectenna for 5.2- and 5.8-GHz wireless power transmission,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6006–6010, Nov. 2015.
[17]F.-J. Huang, C.-M. Lee, C.-L. Chang, L.-K. Chen, T.-C. Yo, and C.-H. Luo, “Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2646–2653, July 2011.
[18]Y.-H. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 7, pp. 1784–1789, July 2002.
[19]J. Heikkinen and M. Kivikoski, “A novel dual-frequency circularly polarized rectenna,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 330–333, 2003.
[20]D. Masotti, A. Costanzo, M. D. Prete, and V. Rizzoli, “Genetic-based design of a tetra-band high-efficiency radio-frequency energy system,” IET Microw. Antennas Propag., vol. 7, no. 15, pp. 1254–1263, Dec. 2013.
[21]M. Piñuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF energy harvesting in urban and semi-urban environments,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2715–2726, July 2013.
[22]B. Li et al., “An antenna co-design dual band RF energy harvester,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3256–3266, Dec. 2013.
[23]D. Pavone, A. Buonanno, M. D’Urso, and F. G. Corte, “Design considerations for radio frequency energy harvesting devices,” Progr. Electromagn. Res., vol. 45, pp. 19–35, 2012.
[24]A. Costanzo, A. Romani, D. Masotti, N. Arbizzani, and V. Rizzoli, “RF/baseband co-design of switching receivers for multiband microwave energy harvesting,” Sensors Actuators A, Phys., vol. 179, pp. 158–168, June 2012.
[25]B. L. Pham and A.-V. Pham, “Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900, and 2400 MHz,” Proc. IEEE MTT-S Int. Microw. Symp, Seattle, WA, June 2013, pp. 1–3.
[26]V. Rizzoli, G. Bichicchi, A. Costanzo, F. Donzelli, and D. Masotti, “CAD of multi-resonator rectenna for micro-power generation,” Proc. European Microwave Conf., Rome, Italy, Sept. 2009, pp. 1684–1687.
[27]H. Sun, Y.-X. Guo, M. He, and Z. Zhong, “Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 929–932, 2012.
[28]A. Georgiadis, G. Andia-Vera, and A. Collado, “Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 444–446, 2010.
[29]X.-X. Yang, C. Jiang, A. Z. Elsherbeni, F. Yang, and Y.-Q. Wang, “A novel compact printed rectenna for data communication systems,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2532–2539, May 2013.
[30]H. Takhedmit, L. Cirio, S. Bellal, D. Delcroix, and O. Picon, “Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna,” Electron. Lett., vol. 48, no. 5, pp. 253–254, Mar. 2012.
[31]B. Strassner and K. Chang, “Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission,” IEEE Trans. Antennas Propag., vol. 51, no. 6, pp. 1347–1356, June 2003.
[32]Y. J. Ren and K. Chang, “5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1495–1502, Apr. 2006.
[33]F. Huang, T. Yo, C. Lee, and C. Luo, “Design of circular polarization antenna with harmonic suppression for rectenna application,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 592–595, 2012.
[34]Z. Harouni, L. Cirio, L. Osman, A. Gharsallah, S. Member, and O. Picon, “A dual circularly polarized 2.45-GHz rectenna for wireless power transmission,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 306–309, 2011.
[35]W. Haboubi et al., “An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band,” Prog. Electromagn. Res., vol. 148, pp. 31–39, 2014.
[36]J.-H. Chou, D.-B. Lin, K.-L. Weng, and H.-J. Li, “All polarization receiving rectenna with harmonic rejection property for wireless power transmission,” IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5242–5249, Oct. 2014.
[37]H. Sun and W. Geyi, “A new rectenna with all-polarization-receiving capability for wireless power transmission,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 814–817, 2016.
[38]H. Sun, “An enhanced rectenna using differentially-fed rectifier for wireless power transmission,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 32–35, 2016.
[39]C.-H. Chin, Q. Xue, and C. H. Chan, “Design of a 5.8-GHz rectenna incorporating a new patch antenna,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 175–178, 2004.
[40]A. Collado and A. Georgiadis, “Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2225–2234, Aug. 2013.
[41]K. Niotaki, F. Giuppi, A. Georgiadis, and A. Collado, “Solar/EM energy harvester for autonomous operation of a monitoring sensor platform,” Wireless Power Transfer, vol. 1, no. 1, pp. 44–50, Mar. 2014.
[42]H. Takhedmit, L. Cirio, F. Costa, and O. Picon, “Transparent rectenna and rectenna array for RF energy harvesting at 2.45 GHz,” Proc. European Microwave Conf., Hauge, Netherlands, Apr. 2014, pp. 2970–2972.
[43]U. Olgun, C.-C. Chen, and J. L. Volakis, “Investigation of rectenna array configurations for enhanced RF power harvesting,” IEEE Antenna Wireless Propag. Lett., vol. 10, pp. 262–265, 2011.
[44]J. A. C. Theeuwes, H. J. Visser, M. C. van Beurden, and G. J. N. Doodeman, “Efficient, compact, wireless battery design,” Proc. Eur. Microw. Conf., Munich, Germany, Oct. 2007, pp. 991–994.
[45]P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE J. Emerg. Select. Topics Circuits Syst., vol. 2, no. 1, pp. 24–33, Mar. 2012.
[46]Y. Ushijima, T. Sakamoto, E. Nishiyama, M. Aikawa, and I. Toyoda, “5.8-GHz integrated differential rectenna unit using both-sided MIC technology with design flexibility,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 3357–3360, June 2013.
[47]U. Olgun, C.-C. Chen, and J. L. Volakis, “Design of an efficient ambient WiFi energy harvesting system,” IET Microw., Antennas & Propag., vol. 6, no. 1, pp. 1200–1206, Aug. 2012.
[48]T. Sakamoto, Y. Ushijima, E. Nishiyama, M. Aikawa, and I. Toyoda, “5.8-GHz series/parallel connected rectenna array using expandable differential rectenna units,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4872–4875, Sept. 2013.
[49]J. Zbitou, M. Latrach, and S. Toutain, “Hybrid rectenna and monolithic integrated zero-bias microwave rectifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 147–152, Jan. 2006.
[50]K. Nishida et al., “5.8 GHz high sensitivity rectenna array,” IEEE MTT-S Int. Microw. Symp. Dig. Workshop, Kyoto, Japan, May 2011, pp. 19–22.
[51]C. R. Valenta and G. D. Durgin, “Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems,” IEEE Microw. Mag., vol. 15, no. 4, pp. 108–120, June 2014.
[52]A. Collado and A. Georgiadis, “Optimal waveforms for efficient wireless power transmission,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 5, pp. 354–356, May 2014.
[53]C. R. Valenta, M. M. Morys, and G. D. Durgin, “Theoretical energy-conversion efficiency for energy-harvesting circuits under power-optimized waveform excitation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 5, pp. 1758–1767, May 2015.
[54]M. Roberg, T. Reveyrand, I. Ramos, E. A. Falkenstein, and Z. Popovic, “High-efficiency harmonically terminated diode and transistor rectifiers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 4043–4052, Dec. 2012.
[55]S. Hemour et al., “Towards low-power high-efficiency RF and microwave energy harvesting,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 965–976, Apr. 2014.
[56]V. Marian, C. Vollaire, J. Verdier, and B. Allard, “Potentials of an adaptive rectenna circuit,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1393–1396, 2011.
[57]K. Niotaki, A. Georgiadis, A. Collado, and J. S. Vardakas, “Dual-band resistance compression networks for improved rectifier performance,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, pp. 3512–3521, Dec. 2014.
[58]T. Paing, E. Falkenstein, R. Zane, and Z. Popovic, “Custom IC for ultra-low power RF energy scavenging,” IEEE Trans. Power Electron., vol. 26, no. 6, pp. 1620–1626, June 2011.
[59]D. Masotti, A. Costanzo, P. Francia, M. Filippi, and A. Romani, “A load-modulated rectifier for RF micropower harvesting with start-up strategies,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 994–1004, Apr. 2014.
[60]A. Boaventura, A. Collado, and N. B. Carvalho, “Optimum behavior: Wireless power transmission system design through behavioral models and efficient synthesis techniques,” IEEE Microw. Mag., vol. 14, no. 2, pp. 26–35, Mar. 2013.
[61]M. K. Hosain and A. Z. Kouzani, “Design and analysis of efficient rectifiers for wireless power harvesting in DBS devices,” Proc. 8th IEEE Conf. Ind. Electron. Appl., Melbourne, VIC, June 2013, pp. 651–655.
[62]E. Falkenstein, M. Roberg, and Z. Popovic, “Low-power wireless power delivery,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 7, pp. 2277–2286, July 2012.
[63]T.-W. Yoo and K. Chang, “Theoretical and experimental development of 10 and 35 GHz rectennas,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp. 1259–1266, June 1992.
[64]J. A. G. Akkermans, M. C. van Beurden, G. J. N. Doodeman, and H. J. Visser, “Analytical models for low-power rectenna design,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 187–190, 2005.
[65]J.-Y. Park, S.-M. Han, and T. Itoh, “A rectenna design with harmonic-rejecting circular-sector antenna,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 52–54, 2004.
[66]H. Takhedmit et al., “Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device,” Electron. Lett., vol. 46, no. 12, pp. 811–812, June 2010.
[67]J. A. Ferland and D. Costa, “Heuristic search methods for combinatorial programming problems,” Publication DIRO-1193, Université de Montréal, Québec, Canada, Mar. 2001.
[68]E. Hairer, G. Wanner, and S. P. Nórsett, Solving Ordinary Differential Equations I, Berling, Springer-Verlag, 1993.
[69]H. Eriksson and R. W. Waugh, “A temperature compensated linear diode detector,” Agilent Technol., Palo Alto, CA, Design Tip, 2000.
[70]E. Gilbert, “Impedance matching with lossy components,” IEEE Trans. Circuits Syst., vol. 22, no. 2, pp. 96–100, Feb. 1975.
[71]F. J. Witt, “Optimum lossy matching networks for resonant antennas,” Dig. Antennas Propag. Soc. Int. Symp., San Jose, CA, June 1989, pp. 1360-1363.
[72]Y. Han and D. J. Perreault, “Analysis and design of high efficiency matching networks,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1484–1491, Sept. 2006.
[73]D. M. Pozar, Microwave Engineering. 3rd ed., New York: Wiley, 2005.
[74]H.-W. Son and C.-S. Pyo, “Design of RFID tag antennas using an inductively coupled feed,” Electron. Lett., vol. 41, no. 18, pp. 994–996, Sept. 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔