(18.204.227.34) 您好!臺灣時間:2021/05/14 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡水長
研究生(外文):Shui-Chang Cai
論文名稱:應用於4G LTE-A射頻功率放大器之並聯混合式電源調變器
論文名稱(外文):Parallel Hybrid Supply Modulators for 4G LTE-A RF Power Amplifiers
指導教授:陳建中陳建中引用關係黃育賢
指導教授(外文):Jiann-Jong ChenYuh-Shyan Hwang
口試委員:陳建中黃育賢郭建宏邱弘緯
口試委員(外文):Jiann-Jong ChenYuh-Shyan HwangChien-Hung KuoHung-Wei Chiu
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系碩士班(碩士在職專班)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:電源調變器、封包追蹤、混合式電源調變器、LTE、LTE-A
外文關鍵詞:Supply modulatorenvelope trackingHybrid supply modulatorLTELTE-A
相關次數:
  • 被引用被引用:1
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為應用於封包追蹤射頻功率放大器(Radio frequency power amplifier, RF-PA)之電源調變器。高資料傳輸率與複雜調變技術增加峰值平均功率比 (Peak-to-Average Power Ratio, PAPR),封包追蹤技術是藉由放大封包訊號推動力驅動RF-PA,改善因高PAPR的訊號造成功率放大器的效率低下的問題。為了增加電源調變器的效率並同時有線性之輸出電壓,電路架構為並聯線性放大器與切換式放大器來提供輸出電流。
本論文第一部分為一混合式電源調變器,電路由軌對軌輸入與輸出之線性放大器並聯切換式電路組成,輸出封包電壓及負載電流,利用感測線性放大器輸出之電流控制切換式放大器輸出的工作週期,達到電感之電流追隨負載電流的目的。晶片使用台積電0.18 um CMOS製程實現,電壓輸出範圍0.7~2.5 V,最大負載電流540 mA,晶片面積為0.764 mm x 0.901 mm。
本論文第二部分提出雙頻寬控制之並聯混合電源調變器,分離線性放大器與切換式放大器的控制迴路,降低切換損失與切換式放大器產生之地端反彈的雜訊,晶片使用台積電0.18 um CMOS製程實現,電壓輸出範圍1.1~2.9 V,最大負載電流725 mA,晶片使用面積1.2 mm x1.2 mm。
The thesis proposes a supply modulator for the envelope tracking radio frequency power amplifier (RF-PA). A high data transmission rate and a complex modulation technique lead to a high peak-to-average power ratio (PAPR). To improve the low efficiency of RF-PA because of the high PAPR, the envelope tracking technique modulates the supply voltage to drive the RF-PA. In order to increase the supply modulator efficiency and keep the output linearity, the architecture is composed of a linear amplifier and a switching amplifier with parallel connection.
The first part of the thesis is a hybrid supply modulator composed of a rail to rail input and output linear amplifier and a switching circuit in parallel. The hybrid supply modulator maintains the output voltage and provides the power to the load. The duty cycle of the switching circuit is controlled by the sensing current from the linear amplifier output stage. Thus, the inductor current follows the load current. The hybrid supply modulator has been fabricated in TSMC 0.18 um process. The output range is 0.7 V~2.5 V, the maximum output current is 540 mA, and the chip area is 0.764 mm × 0.901 mm.
The second part of the thesis is a parallel hybrid supply modulator with the control of dual bandwidth inputs. The control loops of the linear amplifier and the switching amplifier are independent to each other. The supply modulator has low switching losses and ground bounces caused by the switching amplifier. The proposed supply modulator has been fabricated in TSMC 0.18 um process. The output voltage is 1.1 V~2.9 V, the maximum output current is 725 mA, and the chip area is 1.2 mm × 1.2 mm.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 論文架構 6
第二章 電源調變器與封包追蹤 7
2.1 直流電源轉換器 7
2.1.1 線性放大器 7
2.1.2 切換式降壓轉換器 8
2.1.3 切換式升壓轉換器 11
2.2 並聯式電源調變器 14
2.3 文獻討論 17
2.3.1 串並聯混合式封包放大器 17
2.3.2 雙切換並聯式混合電源調變器 18
2.3.3 使用多線性調節器之封包放大器 20
2.3.4 直接數位介面升降壓電源調變器 21
2.3.5 全切換式轉換器之多相位封包放大器 22
第三章 適用於LTE-A射頻功率放大器之並聯混合式電源調變器 23
3.1 電路架構 23
3.1.1 線性放大器 24
3.1.2 感測電路 26
3.1.3 非重疊電路 27
3.1.4 驅動電路 28
3.2 電路模擬 30
3.3 晶片佈局與量測 34
3.3.1 晶片佈局 34
3.3.2 晶片腳位與定義 35
3.3.3 量測環境 36
3.3.4 量測結果 37
3.4 規格表 52
第四章 適用於100MHz封包追蹤RF功率放大器之具雙頻寬控制混合電源調變器 53
4.1 電路架構 53
4.1.1 線性放大器 53
4.1.2 全週期電流感測 56
4.1.3 運算放大器 57
4.1.4 遲滯窗口電路 60
4.1.5 遲滯控制電路 60
4.1.6 史密特觸發器 62
4.2 電路模擬 64
4.3 晶片佈局與環境 68
4.3.1 晶片佈局 68
4.3.2 晶片腳位與定義 69
4.3.2 量測環境 70
4.3.3 量測結果 72
4.4 規格表與文獻比較表 79
第五章 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 83
[1]T. Nakamura. (2009). Proposal for candidate radio interface technologies for IMT‐advanced based on LTE release 10 and beyond (LTE‐advanced) [Online]. Available: http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
[2]C. Cox, “An Introduction to LTE: LTE, LTE-advanced, SAE and 4G mobile communications”, Wiley, 2012.
[3]E. Dahlman, S. Parkvall, and J. Skold, “4G: LTE/LTE-advanced for mobile broadband”, Academic Press, 2011.
[4]A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology”, IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 10-22, Jun. 2010.
[5]Z. Wang, “Demystifying Envelope Tracking,” IEEE Microw.Mag., vol. 16, no. 3, pp. 106-129, Apr.2015.
[6]J. Kim et al., “Highly efficient RF transmitter over broad average power range using multilevel envelope-tracking power amplifier,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 62, no. 6, pp. 1648–1657, Jun. 2015.
[7]C. Yu and A. Zhu, “A single envelope modulator-based envelope tracking structure for multiple-input and multiple-output wireless transmitters,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3317–3327, Oct. 2012.
[8]D. Kang, B. Park, D. Kim, J. Kim, Y. Cho and B. Kim, “Envelope-tracking CMOS power amplifier module for LTE applications”, IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3763-3773, 2013.
[9]G. Gonzalez, “Microwave Transistor Amplifiers: Analysis and Design”, Pearson, 1996.
[10]D. Kim, D. Kang, J. Choi, J. Kim, Y. Cho, and B. Kim, “Optimization for envelope shaped operation of envelope tracking power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1787–1795, July. 2011.
[11]M. Hassan, L. E. Larson, V. W. Leung, and P. M. Asbeck, “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1185–1189, May. 2012.
[12]F. Wang , D. F. Kimball , J. D. Popp , A. H. Yang , D. Y. Lie , P. M. Asbeck and L. E. Larson, “An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4086-4099, 2006.
[13]D. Kang, “A multimode/multiband power amplifier with a boosted supply modulator”, IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2598-2608, 2010.
[14]J. Choi, D. Kim, D. Kang and B. Kim, “A new power management IC architecture for envelope tracking power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1796-1802, 2011.
[15]Y. Li, J. Lopez, P.-H. Wu, W. Hu, R. Wu and D.-C. Lie, "A SiGe envelope-tracking power amplifier with an integrated CMOS envelope modulator for mobile WIMAX/3GPP LTE transmitters", IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2525-2536, 2011.
[16]M. Hassan, L. E. Larson, V. W. Leung, D. F. Kimball, and P. M. Asbeck, “A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1321-1330, May. 2012.
[17]Y. Li , J. Lopez , R. Wu and D. Y. C. Lie, "A fully monolithic BiCMOS envelope-tracking power amplifier with on-chip transformer for broadband wireless applications," IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 288-290, 2012.
[18]Y. Li , J. Lopez , C. Schecht , R. Wu and D. Y.C. Lie, “Design of high efficiency monolithic power amplifier with envelope-tracking and transistor resizing for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2007-2018, 2012.
[19]Y. Cho, D. Kang, J. Kim, D. Kim, B. Park and B. Kim, “A dual power-mode multi-band power amplifier with envelope tracking for handset applications,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1608-1619, 2013.
[20]R. Wu, Y.-T. Liu, J. Lopez, C. Schecht, Y. Li and D. Lie, “High-efficiency silicon-based envelope-tracking power amplifier design with envelope shaping for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2030-2040, 2013.
[21]D. Kim, D. Kang, J. Kim, Y. Cho, and B. Kim, “Highly efficient dual switch hybrid switching supply modulator for envelope tracking power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 285–287, Jun. 2012
[22]J. H. Kim, H. S. Son, W. Y. Kim, and C. S. Park, “Envelope amplifier with multiple-linear regulator for envelope tracking power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 11, pp. 3951–3960, Nov. 2013.
[23]S. H. Yang, C. L. Wey, K. H. Chen, Y. H. Lin, J. J. Chen, T. Y. Tsai and C. C. Lee, “A 20MS/s buck/boost supply modulator for envelope tracking applications with direct digital interface,” in IEEE Asian Solid-State Circuits Conf, pp. 73-76, Nov. 2014.
[24]J. Sankman, M. Song, and D. Ma, “Switching-converter-only multiphase envelope modulator with slew rate enhancer for LTE power amplifier applications,” IEEE Trans. Power Electronics, Feb. 2015.
[25]M. A. G. Lorenzo, A. A. S. Manzano, M. T. A. Gusad, J. R. E. Hizon, M. D. Rosales, “Design and implementation of CMOS Rail-to-Rail Operational Amplifiers,” in IEEE Communications and Information Technologies. conf., Oct. 2007, pp. 61-66.
[26]何晟興,適用於LTE及LTE-A功率放大器之 寬頻混合式電源調變器,國立台北科技大學,電子工程系碩士班,碩士論文,台北,2015。
[27]B. Razavi, “Design of analog CMOS integrated circuits”, McGraw-Hill, 2001.
[28]J. J. Chen, F. C. Yang, and C. C. Chen, “A new monolithic fast-response buck converter using spike-reduction current-sensing circuits,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1101–1111, Mar. 2008.
[29]M. K. Alghamdi and A. A. Hamoui, “A spurious-free switching buck converter achieving enhanced light-load efficiency by using a ΔΣ-modulator controller with a scalable sampling frequency,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 841-851, April 2012.
[30]R. J. Baker, “CMOS: circuit design, layout, and simulation”, Wiley, 2010.
[31]S. M. Kang, and Y. Leblebici, “CMOS digital integrated circuits analysis and design,” McGraw-Hill, 2002.
[32]M. Hassan, P. M. Asbeck, and L. E. Larson, “A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20MHz LTE Envelope Tracking RF power amplifiers,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 366-367, Feb. 2013.
[33]J. S. Paek, Y. S. Youn, J. H. Choi, D. S. Kim, J. H. Jung, Y. H. Choo, S. J. Lee, S. C. Lee, T. B. Cho and I. Y. Kang, “An RF-PA supply modulator achieving 83% efficiency and -136dBm/Hz noise for LTE-40MHz and GSM 35dBm applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2016, pp. 354–356.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔