(3.238.96.184) 您好!臺灣時間:2021/05/12 15:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭冀榮
研究生(外文):Chi-Jung Kuo
論文名稱:無線通訊隻關鍵組件設計:寬頻圓極化天線、微小化多輸入多輸出天線與Metamaterial空腔
論文名稱(外文):Design of key components for wireless communication: wideband circularly polarized antenna, miniaturized MIMO antenna and metamaterial cavity
指導教授:毛紹綱、黃育賢
指導教授(外文):Shau-Gang Ma,Yuh-Shyan Hwang
口試委員:毛紹綱、黃育賢、孫卓勳、余政杰、瞿大雄
口試委員(外文):Shau-Gang Mao, Yuh-Shyan Hwang, Jwo-Shiun Sun, Cheng-Cheih Yu, Tah-Hsiung Chu
口試日期:2016-07-26
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電子工程系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:英文
中文關鍵詞:寬頻圓極化、天線、高增益、多輸入多輸出、微小化、超穎材料空腔、人工磁導體。
外文關鍵詞:Wideband circularly polarizedAntennaHi gainMIMOMiniaturizedMetamaterial cavityartificial magnetic conductor surface.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了寬頻圓極化天線與多輸入多輸出天線 (Multi-in-multi-out Antenna ; MIMO Antenna), 其中寬頻圓極化天線使用了漸變式槽孔結構, 背板金屬與相位延遲之微帶線饋入激發圓極化輻射波, 利用全波模擬軟體分析天線的地平面形狀與輻射特性的關聯性後最佳化出本論文提出的半圓形地平面結構來保持極佳的圓極化輻射特性.本論文所提出的寬頻圓極化天線其軸比低於3Db為4.25GHz到6.75GHz,共有45%的圓極化輻射比例頻寬。而量測的天線增益可達10.5dBic。
同時本論文亦提出了多輸入多輸出天線,此天線使用了 單極天線與 槽孔天線縮小化天線體積,本天線體積為 ,為了量化本天線的特性,我們使用了S參數來計算相關性係數,相關性係數在所設計的頻段小於0.016,本論文提出的微小化多輸入多輸出天線可以良好的應用於MIMO系統。
最後本論文提出了應用於RFID之增強設備,此增強設備為超穎材料 (Metamaterial)腔體所構成,其中包含了兩個人造磁導體面與四個金屬面,經由AS3992 RFID模組偵測RFID tag的接收情況來驗證此增強設備的效能,本論文比較了自由空間、傳統金屬腔體與超穎材料腔體,除了透過理論分析與模擬結果外,藉由時RFID模組驗證了增強設備的效能。
This work presents the design of novel dual-fed circularly polarized (CP) antenna. This antenna consists of a tapered slot, a backside metal plate and a microstrip-fed delay line phase shifter, which excites circularly polarized electromagnetic wave. By using the full-wave simulator, the shape of the ground plane and the radiation performance can be analyzed. The proposed antenna covers the bandwidth of axial ratio lower than 3 dB from 4.25 to 6.75 GHz. The measured antenna gain is 10.5 dBic
Also, this thesis proposes a multiple-input-multiple-output (MIMO) antenna. This antenna uses monopole and slot antenna to miniaturize antenna size. The size of proposed antenna is . For evaluating this antenna, the S parameter is used to calculate correlation coefficient which is less than 0.016.
Finally, this thesis presents the field-enhancement device for RFID (Radio Frequency IDentification) application. This device is constructed by metamaterial cavity which consists of two artificial magnetic conductor (AMC) surface and four metallic plane. By using AS3992 RFID module, the tag can be used to verify the performance of this field-enhancement device. Three scenarios, including free space, conventional metal cavity, and metamaterial cavity, are presented for comparison.
Contents

中文摘要 i
Abstract ii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 INTRODUCTION 1
1.1 Motivation and Development 1
1.2 Organization of This Thesis 3
Chapter 2 A Novel Wideband Circularly Polarized Dual-fed Slot antenna
With Microstrip Feeding Network 5
2.1 Previous Work 5
2.2 Antenna Configuration 8
2.2.1 Dual-fed Slot Antenna 8
2.2.2 Ground Edge Diffraction of The Slot Antenna 11
2.3 Suppression of Backed Radiation 15
2.4 Experimental Results 16
2.5 Conclusion 22
Chapter 3 Miniaturized Multi-Band antenna for MIMO System 23
3.1 Previous Work 23
3.2 Antenna design and operation 24
3.3 Experiment Result and Analysis 29
3.4 Conclusions 34
Chapter 4 Novel Metamaterial Cavity For RFID Application 35
4.1 Introduction 35
4.2 Metamaterial Cavity Theory 37
4.2.1 Artificial Magnetic Conductor Surface 37
4.2.2 General Metamaterial Cavity 41
4.2.3 Rectangular Metamaterial Cavity 43
4.2.4 Square Metamaterial Cavity 52
4.3 Novel Metamaterial cavity for RFID Application 55
4.4 Conclusions 62
Chapter 5 Conclusions And Future Work 63
REFERENCES 65
PUBLICATON LIST 75
References

[1] W. V. T. Rusch, “Scattering from a hyperboloidal reflector in a cassegrain feed system,” IEEE Trans. Antennas Propag. 1963; 11:414-421.
[2] K. L. Chung and A. S. Mohan, “A systematic design method to obtain broadband characteristics for singly-fed electromagnetically coupled patch antennas for circular oolarization,” IEEE Trans. Antennas Propag. 2003; 51:3239-3248.
[3] M. Yahya, Z. Awang, “Cross polarization ratio analysis of circular polarized patch antenna,” ICEAA, 2010conference, on 2010 Sep. 20-24 Sydney, NSW.
[4] J.S. Han, N. H. Myung, “Novel Feed Network for Circular Polarization Antenna Diversity,” IEEE Antennas Wireless Propag. Lett.2014; 13:979-982.
[5] V. Sharma, B. Sharma, V.K. Saxena, K.B. Sharma, M.M. Sharma and D. Bhatnagar, “Circularly polarized stacked square patch microstrip antenna with tuning stubs,” IAW, 2011 Dec. 18-22 Kolkata.
[6] K. Agarwal, Nasimuddin and A. Alphones, “RIS-based Compact Circularly Polarized Microstrip Antennas”, IEEE Transactions on Antennas and Propagation, vol. 61, no. 2, pp. 547–554, Feb. 2013.
[7] L. Bian, Y. X. Guo, L. C. Ong, and X. Q. Shi, “Wideband circularly-polarized patch antenna,” IEEE Trans. Antennas Propag. 2006; 54:2682-2686.
[8] S. L. S. Yang and K. M. Luk, “A wideband L-probes fed circularly-polarized reconfigurable microstrip patch antenna,” IEEE Trans. Antennas Propag. 2008;56:581-584.
[9] Y. X. Guo, K. W. Khoo, and L. C. Ong, “Wideband Circularly polarized patch antenna using broadband baluns,” IEEE Trans. Antennas Propag. 2008; 56:319-326.
[10] Q. Wu, H. Wang, C. Yu, X. Zhang, W. Hong, “L/S-Band Dual Circularly Polarized Antenna Fed by 3-dB Coupler,” IEEE Antennas Wireless Propag. Lett. 2014; 13: 979-982.
[11] K. L. Lau and K. M. Luk, “A novel wide-band circularly polarized patch antenna based on L-probe and aperture-coupling techniques,” IEEE Trans. Antennas Propag. 2005; 53:577-580.
[12] K. L. Lau and K. M. Luk, “A wideband circularly polarized conical-beam patch antenna,” IEEE Trans. Antennas Propag. 2006; 54:1591-1594.
[13] K. D. Fasenfest, “A compact dual circularly polarized wideband patch antenna element for array applications,” Antennas and Propagation Society International Symposium (APSURSI), 2014 July 6-11 Memphis, TN.
[14] Y. Cheng, J. Fang, W. Lu, H. Zhu, “A novel reduce-size circularly polarized microstrip antenna,” Antennas and Propagation (APCAP), 2014 3rd Asia-Pacific Conference on 2014 July 26-29 Harbin, China
[15] Y. Zhang and L. Zhu, “Printed dual spiral-loop wire antenna for broadband circular polarization,” IEEE Trans. Antennas Propag.2006;54:284-288.
[16] R. L. Li, A. Traille, J. Laskar, and M. M. Tentzeris, “Bandwidth and gain improvenment of a circularly polarized dual-rhombic loop antenna,” IEEE Antennas Wireless Propag. Lett. 2006; 5:84-87.
[17] J. Y. Sze, C. I. G. Hsu, M. H. Ho, Y. H. Ou, and M. T. Wu, “Design of circularly polarized annular-ring slot antennas fed by a double-bent microstripline,” IEEE Trans. Antennas Propag. 2007; 55:3134-3139.
[18] Y. F. Lin, H. M. Chen, and S. C. Lin, “A new coupling mechanism for circularly polarized annular-ring patch antenna,” IEEE Trans. Antennas Propag. 2006; 56:11-16.
[19] R. L. Li., B. Pan, A. N. Traille, J. Papapolymerou, J. Laskar, and M. M. Tentzeris, “Development of a cavity-backed broadband circularly polarized slot/strip loop antenna with a simple feeding structure,” IEEE Trans. Antennas Propag. 2008; 56:312-318.
[20] X. Bao and M. J. Ammann, “Dual-frequency dual-sense circularly-polarized slot antenna fed by microstrip line,” IEEE Trans. Antennas Propag. 2008; 56:645-649.
[21] J. P. Chen, P. Hsu, “A spirally complementary split-ring resonators antenna for circular polarization and RFID reader application,” Antennas and Propagation Society International Symposium (APSURSI), 2012 July 8-14, Chicago, IL.
[22] X. Fang, K. W. Leung, E. H. Lim, “Singly-Fed Dual-Band Circularly Polarized Dielectric Resonator Antenna,” IEEE Antennas Wireless Propag. Lett., 2014; 13: 995-998.
[23] S. Pyo, “Switchable circularly-polarised square ring antenna controlled by dual-loaded dual-loop,” Electronics Letters 2014; 50:428-429.
[24] V. Sharma, M. M. Sharma, “Circularly polarized broadband triangular microstrip antenna with slits for C band,” Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference on 2014 July 12-13, Ajmer.
[25] K. Agarwal, Nasimuddin and A. Alphones, “Wideband Circularly Polarized AMC Reflector Backed Aperture Antenna”, IEEE Transactions on Antennas and Propagation, vol. 61, no. 3, pp. 1456–1461, Mar. 2013.
[26] H. Nakano, R. Satake and J. Yamauchi, "Extremely low-profile, single-arm, wideband spiral antenna radiating a circularly polarized wave", IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1511-1520, 2010.
[27] J. G. Baek, and K. C. Hwang, “Triple-band unidirectional circularly polarized hexagonal slot antenna with multiple L-shaped slits” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4831-4835, 2013.
[28] T. Ijiguchi, D. Kanemoto, K. Yoshitomi, K. Yoshida, A. Ishikawa, S. Fukagawa, N. Kodama, A. Tahira, and H. Kanaya, “Circularly polarized one-sided directional slot antenna with reflector metal for 5.8-GHz DSRC operations” IEEE Antennas Wireless Proag. Lett., 2008; 13:778-781.
[29] W. Liu, K. Wei, Z. Zhang, J. Zheng, and Z. Feng, “A circularly polarized antenna with conical beam” Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2011 IEEE, 2011 Dec. 12-14, Hanzhou.
[30] S. G. Mao and S. L. Chen, “Frequency- and time-domain characterizations of ultrawideband tapered loop antennas,” IEEE Trans. Antennas Propag. 2007; 55: 3698-3701.
[31] S. Cheng, P. Hallbjörner, and A. Rydberg, “Printed slot planar inverted cone antenna for ultrawideband application,” IEEE Antennas Wireless Proag. Lett., 2008; 7:18-21.
[32] A. M. Abbosh, “Design of ultra-wideband three-way arbitrary power dividers,” IEEE Trans. Microw. Theory Tech. 2008; 56:194-201.
[33] L. Wang, L. Xu, X. Chen, R. Yang, L. Han, W. Zhang, “A compact ultrawideband diversity antenna with high isolation,” IEEE Antennas Wireless Propag. Lett. 2014; 13:35-38.
[34] M. Manohar, R. S. Kshetrimayum, A. K. Gogoi, “Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications,” Microwaves, Antennas & Propagation, IET 2014; 8:39-45.
[35] J. Wu, Z. Zhao, Z. Nie, Q.-H. Liu, “A printed UWB vivaldi antenna using stepped connection structure between slotline and tapered patches,” IEEE Antennas Wireless Propag. Lett. 2014; 13:698-701.
[36] J. J. Golezani, M. Abbak. “A Novel Compact Wideband Directional Monopole Antenna for Use in Radar Applications” ANTEM 2012 June 25-28 Toulouse.
[37] W. Liang, Y.-C. Jiao, Y. Luan and C. Tian “A Dual-Band Circularly Polarized Complementary Antenna” Antennas Wireless Propag. Lett. 2015; 99:1.
[38] Y.-J. Hu, W.-P. Ding, W.-M. Ni, and W.-Q. Cao “Broadband Circularly Polarized Cavity-Backed Slot Antenna Array With Four Linearly Polarized Disks Located in a Single Circular Slot” Antennas Wireless Propag. Lett. 2012;11:496-499.
[39] K. X. Wang, and H. Wong, “A Circularly Polarized Antenna By using Rotated-Stair Dielectric Resonator” Antennas Wireless Propag. Lett. 2014; 99:1.
[40] L. Chen, T.-L. Zhang, C. Wang, and X.-W. Shi, “Wideband Circularly Polarized Microstrip Antenna With Wide Beamwidth” Antennas Wireless Propag. Lett. 2014; 13:1577-1580.
[41] Nasimuddun, Z. N. Chen, and K. P. Esselle. “Wideband circularly polarized microstrip antenna array using a new single feed network”, Microwave and Optical Technology Letters, vol. 50, no. 7, July 2008, pp. 1784–1789.
[42] G. Li, H. Zhai,L. Li, and C. Liang, “A Nesting-L Slot Antenna With Enhanced Circularly Polarized Bandwidth and Radiation” IEEE Antennas Wireless Proag. Lett., 2014; 13:225-228.
[43] Y. He, W. He, and H. Wong, “A Wideband Circularly Polarized Cross-Dipole Antenna” IEEE Antennas Wireless Proag. Lett., 2014; 13:67-70.
[44] Y. Chung, S. S. Jeon, D. Ahn, J. I. Choi, and T. Itoh, High isolation dual-polarized patch antenna using integrated defected ground structure, IEEE Microw. Wireless Comput. Lett., 14(2004), 4-6.
[45] J. Itoh, N. Michishita and H. Morishita, “A study on mutual coupling reduction between two inverted-F antennas using mushroom-type EBG structures”, in Proc. IEEE AP-S Int. Symp., 2008, 1-4.
[46] Z. Liu, Y. Shi, D. Shi, Y. Gao, “Mutual Coupling Reduction of a 2.6 GHz Dual-Element MIMO Antenna System with EBG Structures,” URSI GASS XXXIth URSI, 2014, 1-4.
[47] D.H. Margaret, M.R. Subasree, S. Susithra, S.S. Keerthika, B. Manimegalai, “Mutual Coupling Reduction in MIMO Antenna System using EBG Structures”, 2012 International Conference on Signal Processing and Communications (SPCOM), 2012, 1-5.
[48] T. Kokkinos, E. Liakou and A. P. Feresidis, “Decoupling antenna elements of PIFA arrays on handheld devices”, Electron. Lett., 44(2008),1442-1444.
[49] H. Matsuno, M. Nakano, and A. Yamaguchi, Slim “Omnidirectional Orthogonal Polarization MIMO Antenna with Halo and Patch Antennas on the Cylindrical Ground Plane”, 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013, 720-724.
[50] S. Shoaib, I. Shoaib, N. Shoaib, X. Chen and C.G. Parini, “A 4x4 MIMO Antenna System for Mobile Tablets”, 8th European Conference on Antennas and Propagation, 2014, 2813-2816.
[51] T. Ohishi, N. Oodachi, S. Sekine and H. Shoki, “A method to improve the correlation coefficient and the mutual coupling for diversity antenna”, in Proc. IEEE AP-S Int. Symp., 1A(2005), 507-510.
[52] S.-C. Chen, Y.-S. Wang and S.-J. Chung, “A decoupling technique for increasing the port isolation between two strongly coupled antennas”, IEEE Trans. Antennas Propag., 56(2008), 3650-3658.
[53] V. Ssorin, A. Artemenko, A. Sevastyanov, R. Maslennikov, “Compact Bandwidth-Optimized Two Element MIMO Antenna System for 2.5 – 2.7 GHz Band”, Proc. of the 5th European Conference on Antennas and Propagation (EUCAP), 2011, pp. 319-323.
[54] Y.-T. Im, J.-H. Lee, R. A. Bhatti and S.-O. Park, “A spiral-dipole antenna for MIMO systems”, IEEE Antennas Wireless Propag. Lett., vol. 7(2008),803-806.
[55] Y. Cheng, Z. Sun, W. Lu and H. Zhu, “A Novel Compact Dual-Band MIMO Antenna”, 2014 3rd Asia-Pacific Conference on Antennas and Propagation, 2014, 157-160.
[56] A. Gummalla, C.-J. Lee and M. Achour, “Compact metamaterial quad-band antenna for mobile application”, in Proc. IEEE AP-S Int. Symp., 2008,1-4.
[57] Shuai Zhang, Kun Zhao, Zhinong Ying, and Sailing He “Investigation of diagonal antenna–chassis mode in mobile terminal LTE MIMO antennas for bandwidth enhancement” IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, April 2015
[58] S. Blanch, J. Romeu and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., 39(2003), 705-707.
[59] Y. Ding, Z.-W. Du, K. Gong, and Z.-H. Feng, “A novel dual-band printed diversity antenna for mobile terminals,” IEEE Trans. Antennas Propag., 55,(2007), 2088-2096.
[60] N. Engheta and R. W. Ziolkowski,Metamaterials: Physics and Engineering Explorations. New York: Wiley-IEEE Press, 2006.
[61] H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403-2414, Sep. 2004.
[62] H. Li, J. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen, and C. T. Chan, “All-dimensional subwavelength cavities made with metamaterials,” Appl. Phys. Lett., vol. 89, p.104-101, Sep. 2006.
[63] S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag., vol. 53, no.1, pp. 70–81, Jan. 2005.
[64] D.-H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments using electromagnetic cloaking,” Appl. Phys. Lett., vol. 92, no. 11, 113507, Mar. 2008.
[65] X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials” Nature Mater. vol. 10, no. 8 pp.582 -586. 2011.
[66] C.-Y. Liou, C.-J. Kuo, J.-C. Yeh, Y.-Z. Chueh, S.-G. Mao, “Broadband and strong coupling metamaterial-based cavity resonator using artificial magnetic surfaces.” in IEEE MTT-S Int. IMWS. May 2011., pp. 119-122
[67] IEEE MTT-S International Microwave Worksop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Application, Kyoto, Japan, 12 May–13 May 2011.
[68] Q. Jiang, X. Y. Zhou, J. Y. Chin, and T. J. Cui,J. “Design and realization of a two-dimensional spatial magnetic field mapping apparatus to measure magnetic fields of metamaterials” Appl. Phys. Vol.110, no.024903 2011.
[69] A. Ourir, A. d. Lustrac, and J.-M. Lourtioz, “”All-metamaterial-based subwavelength cavities (λ∕60)(λ∕60) for ultrathin directive antennas Appl. Phys. Lett.vol.88, no.084103 2006.
[70] E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves” Appl. Phys. Lett. vol.99, no.051108 2011.
[71] S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. d. Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions” Appl. Phys. Lett. vol.97, no.064101 2010.
[72] S. Gro¨blacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonatorand an optical cavity field.” Nature (London). vol.460, pp.724-727. 2009.
[73] C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, and I. Favero, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip.” Appl. Phys. Lett. vol.99, no.15, 151117 2011.
[74] Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu,Opt. Express8, 8367 (2010).
[75] A. Kurs, R. Moffatt, and M. Soljacˇic ´, “Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip” Appl. Phys. Lett. vol.96, no.044102 2010 .
[76] O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Ra¨isa ¨nen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches” IEEE Trans. Antennas Propag. vol.56, no.6, pp.1624-1632 2008.
[77] ANSOFT HFSS TM , Ansoft Corporation, Pittsburgh, PA. 14M. M. Weineer,Monopole Antennas(Dekker, NY, 2003).
[78] H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403-2414, Sep. 2004.
[79] L. Yousefi, B. Mohajer-Iravani, and O. M. Ramahi, “Enhanced bandwidth artificial magnetic ground plane for low-profile antennas,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 289-292, 2007.
[80] M. M. Weineer,Monopole Antennas(Dekker, NY, 2003).
[81] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexo´polous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band” IEEE Trans. Microwave Theory Tech. vol.47, no.11 pp.2059-2074. 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔