跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃宏原
研究生(外文):Hong-Yuan Huang
論文名稱:具模糊七階磁滯與模糊PID速度控制器之直接轉矩控制系統晶片設計與實現
論文名稱(外文):Design and Implementation of the Direct Torque Control ASIC with seven-stage fuzzy hysteresis and PID speed controller
指導教授:宋國明宋國明引用關係
指導教授(外文):Guo-Ming Sung
口試委員:謝祥圓馬尚智范育成
口試委員(外文):Guo-Ming SungGuo-Ming SungGuo-Ming Sung
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:特定應用積體電路硬體描述語言離散多重向量電壓模糊速度回授七階磁滯控制器模糊磁滯控制直接轉矩控制感應馬達
外文關鍵詞:application-specific integrated circuithardware description languagediscrete multiple vector voltagefuzzy speed feedbackseven-step fuzzy hysteresis controllerfuzzy hysteresisdirect torque controlInduction motor
相關次數:
  • 被引用被引用:4
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
傳統直接轉矩控制(DTC)定子電壓向量可供選擇數目有限,且較不易估測出誤差的大小,因此透過磁滯控制器選擇電壓向量,但電壓向量會造成漣波過大或響應過慢等現象。為了使系統穩定度上升,且在穩態下提升轉矩、磁通、電流和速度的響應速度,本論文針對磁滯控制器進行模糊化,並將其提升為七階的模糊磁滯控制器,將處理過後的磁通、轉矩值做誤差模糊化後,通過改良型離散型多重向量電壓表(MDMVV)得到所需要選擇的電壓向量。速度命令及實際值之誤差經由模糊PID控制器轉換成轉矩命令值,而磁通與轉矩係由命令值及估測值的誤差,做為模糊化的歸屬函數,再透過MDMVV切換表選擇一組向量組合訊號。MDMVV切換表與傳統切換表之不同在於,傳統DTC每隔一個系統周期產生一次定子電壓向量,而MDMVV則於每隔一個系統周期產生四次合成的定子電壓向量,每組的電壓向量組合均能減少漣波大小,增加控制系統的穩定性。
本論文使用Verilog撰寫控制系統運作程式碼,再使用FPGA板驗證語法與功能正確無誤後,藉由台積電(TSMC0.18um)製程之元件庫與Synopsys和Cadence的最佳化軟體完成電路合成、自動佈局繞線、功能測試等設計流程,完成具模糊七階磁滯與模糊PID速度控制器之直接轉矩控制晶片設計與實現,本論文所設計之晶片大小為1.193*1.190mm2,頻率為10Mhz,消耗功率為5.014mW。
This thesis presents a modified Direct Torque Control (DTC), which includes fuzzy PID and seven-stage hysteresis controller, to improve the ripple problem induced with a limited vector voltages and slow response of speed in traditional DTC. To have a stable control system, one needs to increase the response on torque, flux, current and speed. This work not only proposes a fuzzy PID for speed response but also promoted a seven-stage hysteresis controller. Both flux and torque errors pass through the modified discrete multiple vector voltages (MDMVV) to obtain the required vector voltage; and the speed error is converted into a torque command after passing the fuzzy PID controller. According to the proposed MDMVV switching table, two hundred and ninety four combination vectors are available for selecting suitable vector voltage to be sent to the inverter. Note that four voltage vectors of stator are generated in a cycle for the proposed MDMVV, whereas a vector voltage for traditional DTC. The proposed modified DTC not only reduces the ripples in torque and flux but also enhances the stability of control system.
In this thesis, the hardware description language is used to write the source code of the control system; and that the programmable logic gate array (FPGA) device is considered to verify the function and syntax. Then the TSMC (0.18um CMOS) process is adopted to simulate the designed function. By using the component libraries in Synopsys and Cadence software, the source code is completed with circuit synthesis, automatic layout winding and functional testing process. Finally, the direct torque control ASIC is implemented with fuzzy hysteresis and discrete multiple vector voltages. Simulations demonstrate that the proposed DTC ASIC is implemented in 0.18m CMOS technology with the chip area of 1.1931.190 mm2 at the operating frequency of 10 MHz, the supplied voltage of 1.8 V and the power consumption of 5.014 mW.
摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1研究動機 1
1.2研究方法 3
1.3研究目的 4
第二章 直接轉矩控制系統 6
2.1前言 6
2.2變頻器架構原理介紹 7
2.3感應馬達原理 11
2.4感應馬達數學模型 12
2.5電動機狀態方程式 18
2.6定子磁通量計算 22
2.6.1計算d-q 軸磁通量 22
2.6.2計算d-q 軸合成磁通量 23
2.7轉矩計算 23
2.8磁通角度計算 24
2.9回授速度計算 26
第三章 模糊控制與預測控制系統 27
3.1前言 27
3.2 模糊控制理論 27
3.3模糊控制系統 29
3.3.1模糊化 30
3.3.2規則庫 31
3.3.3模糊推論引擎 32
3.3.4解模糊化 35
3.4模糊磁滯控制器 36
3.4.1定義輸入及輸出變數 36
3.4.2模糊化與歸屬函數 36
3.4.3模糊控制規則 39
3.4.4模糊推論 44
3.4.5解模糊化 48
3.5 Fuzzy PID 控制系統設計 48
3.5.1 簡述 48
3.5.2 PID控制器 49
3.5.3 Fuzzy PID控制器 53
3.6改良型離散多重向量電壓切換表 56
3.7預測控制系統 65
第四章 直接轉矩控制系統實作 66
4.1系統架構介紹 66
4.2電壓估測計算 69
4.3電流估測計算 69
4.4電流ADC轉換 70
4.5 ds–qs磁通計算 72
4.6合成磁通計算 72
4.7轉矩計算 72
4.8角度區間選擇 73
4.9模糊磁滯控制器 73
4.10 改良型離散多重向量電壓切換表 75
4.11預測型控制法則 77
4.12速度回授電路 77
4.13 Fuzzy PID 控制器 78
第五章 晶片設計與驗證 80
5.1簡介 80
5.2標準單元基礎設計流程 80
5.3暫存器轉換階層(RTL)設計 81
5.4合成電路 81
5.5閘階層模擬(Gate-Level Simulation) 83
5.6電路佈局與繞線 84
5.6.1 初始佈局(floorplan) 85
5.6.2時序分析 86
5.6.3繞線(routing) 86
5.7晶片打線 87
5.8製程電路驗證(DRC&LVS) 88
第六章 模擬與驗證 89
6.1軟體模擬與驗證 89
6.2 文獻比較 96
第七章 結論與未來研究 99
7.1 結論 99
7.2 未來研究工作 100
參考文獻 101
1. S. Sathikumar and J. Vithayathil, “Digital simulation of field-oriented control of induction motor,” IEEE Transactions on Industrial Electronics, Vol. IE-31, No. 2, pp. 141-148,1984.
2. Takahashi and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Industry Applications, Vol. IA-22, pp. 820-827, 1986.
3. 劉昌煥,交流電機控制:向量控制與直接轉矩控制原理,台北:東華書局,2001。
4. 胡念祖,感應馬達向量控制穩定度分析,碩士論文,國立台灣科技大學電機工程所,台北,2003。
5. T. G. Habetler, F. Profumo, and M. Pastorelli, "Direct torque control of inductionmachines over a wide speed range," IEEE 1992 Conference Record of IndustryApplications Society Annual Meeting, Vol. 1, 1992, pp. 600-606.
6. 方建翔,三相感應電動機之直接轉矩控制系統晶片設計與製作,碩士論文,國立國立臺北科技大學,臺北,2007。
7. K. Vijay and Madisetti, Digital Signal Processors: An Introduction to Rapid Prototyping and Design Synthesis, IEEE Press, 1995.
8. 黃俊銘,Cell-based IC Implementation and Verification 訓練教材,國家晶片中心,2014。
9. H. Le-Huy, “Microprocessors and digital IC’s for Motion Control,” Invited Paper, Proceedings of the IEEE,Vol. 82, No. 8, 1994, pp. 1140-1163.
10. H. Lee, J. Lee, and S. Seong, “Approach to fuzzy control of an indirectfield-oriented induction motor drives,” IEEE International Symposium onIndustrial Electronics, Vol. 2, pp.1119-1123, June 2001.
11. B. Subudhi, A. K. Anish Kumar, and D. Jena, “SPACE implementation of fuzzylogic based vector control of induction motor,” IEEE Region 10 Conference, pp.1-6, Nov. 2008.
12. J. A. Cortajarena, J. D. Marcos, P. Alvarez, F. J. Vicandi, and P. Alkorta, “Indirectvector controlled induction motor with four hybrid P+Fuzzy PI controllers,” IEEEInternational Symposium on Industrial Electronics, pp. 197-202, June 2007.
13. H. B. Zhou, B. Long and B. C. Cao, “Vector control system of induction motorbased on fuzzy control method,” Workshop on Power Electronics and IntelligentTransportation System, pp. 136-139, Aug. 2008.
14. C. Y. Huang, T. C. Chen, and C. L. Huang, “Robust control of induction motorwith a neural-network load torque estimator and a neural-networkidentification,” IEEE Transactions on Industrial Electronics, Vol. 46, pp.990-998, Oct. 1999.
15. E. Leksono and Pratikto, “Adaptive speed control of induction motor with DSPimplementation,” IEEE Industrial Electronics Society Annual Conference, Vol. 2, pp, 1423-1428, Nov. 2004.
16. J. C. Lopez, L. Romeral, A. Arias, and E. Aldabas, “Novel fuzzy adaptive sensorlessinduction motor drive,” IEEE Transactions on Industrial Electronics, Vol. 53, pp.1170-1178, June. 2006.
17. B. Singh and D. Goyal, “Improved DSVM-DTC based current sensorless permanent magnet synchronous motor drive,” 7th International Conference on Power Electronics and Drive Systems, pp. 1354 - 1360, Nov. 2007.
18. B. Plunkett, “Direct flux and torque regulation in a PWM inverter-induction motor drive,” IEEE Transactions on Industry Applications, Vol. IA-13, No. 2, pp, 139-146, 1977.
19. Y. A. Kwon and S. H. Kim, "A new scheme for speed-sensorless control ofinduction motor," IEEE Transactions on Industrial Electronics, vol. 51, 2004, pp.545-550.
20. X. Wen and X. Yin, “The SVPWM fast algorithm for three-phase inverters,” IEEE International Power Engineering Conference (IPEC),2007.
21. J. O. Pinto, B. K. Bose and L. E. B. da Silva, “A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and flux-vector synthesis by neural networks,” IEEE Transactions on Industry Applications, Vol. 37, No. 5, pp. 1308-1318, 2001.
22. S. Shao and E. Abdi, “Stator flux oriented vector control for brushless doubly-fed induction generator,” IEEE Transactions on Industrial Electronics, pp. 1-8, 2009.
23. ABB Corporation Power Electronics System Products, http://www.abb.com/.
24. J. N. Nash, “Direct torque control induction motor vector control without an encoder,” IEEE Transactions on Industry Applications, Vol. 33, pp. 333-341, 1997.
25. 蔡孟翰,感應馬達直接轉矩控制系統之適應性轉速和電阻估測器設計,碩士論文,國立台北科技大學電機工程系,台北,2011。
26. 王順忠、陳秋麟,電機機械基本原理;第四版,台北:東華書局,2006,第547-575頁。
27. F. M. Abdel-kader, A. EL-Saadawi, A. E. Kalas, and O. M. EL-baksawi, “Study in direct torque control of induction motor by using space vector modulation,” IEEE Int. Middle-East Power System Conference(MEPCON), 2008, pp. 224-229.
28. H. F. Abdul Wahab and H. Sanusi, “Simulink model of direct torque control of induction machine,” American Journal of Applied Scienc, pp. 1083-1090, 2008.
29. M. Matinez-Iturralde, G. Martinez, J. Atencia, A. G. Rico, and J. Florez, “Analysis of voltage measurement techniques for direct torque control of induction motor,” IEEE International Electric Machines and Drives Conference(IEMDC), Vol. 2, 2003, pp. 1151-1155.
30. 楊崇秉,具速度回授控制之預測型直接轉矩控制系統晶片設計與實現,碩士論文,國立國立臺北科技大學,臺北,2013。
31. 溫雅婷,直接轉矩控制感應馬達驅動晶片設計,碩士論文,國立國立臺北科技大學,臺北,2009。
32. B. Mei, H. Liu, and J. Zhang, “Study of fuzzy control in direct torque control system,” International Conference on Artificial Intelligence and Computational Intelligence, Vol. 4, 2009, pp. 129-132.
33. H. Valizadeh Haghi, B. Eskandari, E. Pashajavid, and M. Tavakoli, “An experimental examination of a fuzzy logic-based DTC scheme,” 2nd Power Electronics, Drive System and Technologies Conference, 2011, pp.251-255.
34. L. X. Wang, a Course In Fuzzy Systems and Control, Prentice Hall, 1997.
35. 王文俊,認識Fuzzy,台北:全華圖書股份有限公司,2008。
36. 鄭信源,Verilog硬體描述語言數位電路設計實務,臺北:儒林圖書有限公司,2008。
37. 梁凱翔,預測型直接轉矩控制系統晶片設計與實現,碩士論文,國立國立臺北科技大學,臺北,2012。
38. 陳心喜,具模糊控制之預測型直接轉矩控制系統晶片設計與實現,碩士論文,國立國立臺北科技大學,臺北,2014。
39. 王旭昇,Logic Synthesis with Design Compiler 訓練教材,國家晶片中心,2015。
40. 張年翔,Cell-Based IC Physical Design and Verification with SOC Encounter 訓練教材,國家晶片中心,2015。
41. Sutikno, T. “An Improved FPGA Implementation of Direct Torque Control for Induction Machines,” IEEE Transactions on Industrial Informatics, Vol.9, pp. 1280-1290.
42. Gdaim, S. “Design and implementation of Direct Torque Control of induction machine on FPGA,” International Conference on Simulation and Applied Optimization (ICMSAO), 2013, pp.1-6.
43. Zare, M.A. “FPGA-based design and implementation of direct torque control for induction machines,” International Conference on ReConFigurable Computing and FPGAs (ReConFig), 2014, pp.1-6.
44. Se Jin Kim. “ASIC design for DTC based speed control of induction motor,” IEEE International Symposium on Industrial Electronics, Vol.2, 2001,pp.956-961.
45. 許銘讚,模糊控制器在直接轉矩控制系統晶片設計,碩士論文,國立台北科技大學,台北,2008。
46. 楊耕、羅應立等編著,電機與運動控制系統,清華大學出版社,北京,2005。
47. Ut kin, V.I. “Sliding Mode Control and Their Applicationin Variable Structure systems,” Mir Editors, Moscow, Russia (1978).
48. H.-J. Zimmermann.” Fuzzy set theoy and its applications”, 2 ndedition .Kluwer Academic Publishers, 1991.
49. 孫宗瀛/楊英魁,“Fuzzy控制理論/實作與應用”,台北:全華科技圖書,1995 年。
50. Katsuhiko Ogata, Modern Control Engineering, Prentice-Hall Fourth Edition, 2002.
51. 黃昱齊,模糊磁滯之離散多重向量電壓直接轉矩控制系統晶片設計與實現,碩士論文,國立國立臺北科技大學,臺北,2015。
52. Ali Motamed Oroaya Fini. “Fuzzy Gain Scheduling of PID Controller Implemented on Real Time Level Control” IEEE International Conference on Fuzzy and Intelligent Systems (CFIS), 2015
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊