(3.236.214.19) 您好!臺灣時間:2021/05/09 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴建圻
研究生(外文):Chien Chi Lai
論文名稱:因應動態電價之智慧型家庭節能管理系統
論文名稱(外文):Smart Home Energy Conservation and Management System for Dynamic Pricing
指導教授:姚立德姚立德引用關係
口試委員:練光祐王偉彥蘇順豐黃有評
口試日期:20160721
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:智慧電網太陽能系統模糊邏輯控制基因演算法需量反應
外文關鍵詞:smart gridsolar systemfuzzy logic controlGenetic programmingDemand response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇主旨於實作智慧型家庭節能管理系統(HEMS),於國外地區已經有許多民營電力公司提出需量反應(demand response, DR)機制來提供住戶選擇不同類型的電價模式,經由提供住宅住戶裝設先進讀表系統,以保留住戶隱私的前提進行雙向溝通,同時提高雙方的利益。本研究著重在開發一套嵌入式開發系統(Embedded system),架設家庭節能管理系統,即時監控家庭電網設備與提供互動式人機介面,此外透過模糊邏輯控制方法調節優化家庭中電力之運用。本篇討論於家庭電網中裝設小型太陽發電系統及儲能系統之智慧型家庭,除了傳統之模糊邏輯控制方法外,提出自我學習型模糊控制節能方法,藉由基因演算法將家庭過去電網資訊做為訓練資料,最佳化寬幅調變型之模糊邏輯控制參數,決定家庭節能管理系統基於動態電價所購入市電流量,相較其他相關研究採用模擬的實驗結果,本篇提出完整的家庭節能管理系統軟硬體架構來實作能源調配之節能成果。藉由實驗結果可以得知,本論文提出之節能方法於滿足需量反應機制的同時,透過妥善運用小型太陽能與儲能系統資源,能夠達到節能的成效並降低用戶的用電花費。
A smart home energy management system (HEMS) aiming to consider the demand response (DR) program deployed by the utility company, i.e., the price-based program, and facilitate the bidirectional communication between the utility and residential customers without violating the latter’s privacy using the advanced metering infrastructure (AMI) is implemented to achieve the economic benefits of both parties. To achieve the energy saving purpose, both of the photovoltaic system (PVs) and energy storage system (ESS) are installed in the proposed HEMS to satisfy the demand of residential loads apart from using the electricity power provided by the utility grids. The electricity power flow between PVs, ESS, and utility grids in the proposed HEMS is coordinated using a control module consists of an embedded system, human machine interaction (HMI) web interface, and a fuzzy logic based power dispatch algorithm which aims to determine the amount of electricity purchased from the utility grid. Different with the conventional approach, the proposed fuzzy logic based power dispatch algorithm employs a modulating membership function (MMF) that can be fine tuned based on the historical data of power consumption in HEMS using the genetic algorithm (GA). Extensive simulation and experimental studies show that the proposed HEMS is able to achieve both energy saving and cost reduction purposes by responding to the price-based DR program of utility, exploiting the local generation capability of PVs, and leveraging the energy storage capability of ESS in satisfying the household electricity demands.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究方法與步驟 2
1.3 文獻探討 3
1.4 論文規劃 7
第二章 家庭電能管理系統 8
2.1 系統簡介 8
2.2 系統架構 8
2.2.1 硬體介紹 8
2.2.2 軟體介紹 13
2.3 系統搭建 15
2.4 節能管理系統 21
2.4.1 資料庫管理系統 21
2.4.2 網頁設計 25
第三章 智慧型家庭節能演算法 33
3.1 簡介 33
3.2 模糊節能控制設計 34
3.2.1 研究背景 35
3.2.2 問題描述 36
3.2.3 模糊邏輯控制 37
3.3 自我學習節能控制設計 45
3.3.1 問題描述 46
3.3.2 自我學習節能控制器 47
3.3.3 基因法則輔助節能控制器 65
第四章 硬體實作與實驗 70
4.1 前言與資料分析 70
4.2 基本商用型節能方法 75
4.3 固定型模糊控制節能方法 94
4.4 自我學習模糊控制節能方法 114
4.5 相同天氣之節能方法比較 138
第五章 結論與未來展望 140
5.1 結論 140
5.2 未來展望 141
參考文獻 142
[1] http://solarpv.itri.org.tw/page2.html,經濟部能源局太陽光資訊網
[2] http://www.smart-grid.org.tw/,台灣智慧型電網產業協會
[3] L. A. Zadeh, “Fuzzy sets,” Inform. Contr., vol.8, pp.338-353, 1965.
[4] J. J. Buckley, E. Eslami, and T. Feuring, Fuzzy Mathematics in Economics and Engineering. Physica-Verlag Heidelberg, 2002.
[5] T. Terano, K. Asai, and M. Sugeno, Fuzzy Systems Theory and Its Applications. Academic Press, 1992.
[6] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plants,” Proc IEE Inst. Elect Eng. Contr. Sci., vol. 121, pp.1585-1588, 1974.
[7] L. X. Wang, “Analysis and design of hierarchical fuzzy systems,” IEEE Trans. Fuzzy Systs., vol. 7, no. 5, pp. 617-624, Oct. 1999.
[8] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning form examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1414-1427, Nov. 1992.
[9] J. -S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May-June 1993.
[10] E. Kim, M. Park, S. Ji, and M. Park, “A new approach to fuzzy modeling,” IEEE Trans. Fuzzy Syst., vol. 5, no. 3, pp. 328-337, Aug. 1997.
[11] L. X. Wang, “A Course in Fuzzy Systems and Control”, Englewood Cliffs, NJ: Prentice-Hall, 2005.
[12] W. Y. Wang, Y. G. Leu, and C. C. Hsu, “Robust adaptive fuzzy-neural control of nonlinear dynamical systems using generalized projection update law and variable structure controller,” IEEE Tran. Syst., Man, Cybern. B, vol. 31, no. 1, pp. 140-147, Feb. 2001.
[13] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems,” IEEE Trans. Robot. Autom., vol. 15, pp. 805-817, Oct. 1999.
[14] H. F. HO, Y. K. Wong, and A. B. Rad, “Direct adaptive fuzzy control with state observer for a class of nonlinear system,” IEEE Conf. Fuzzy Syst., pp. 1338-1343, May 2003.
[15] W. Y. Wang, M. L. Chan, C. C. Hsu, and T. T. Lee, “Tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, pp. 483-492, Aug. 2002.
[16] K. Kristinsson and G. Dumont, “System identification and control using genetic algorithms,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 5, pp. 1033–1046, Sept./Oct. 1992.
[17] F. A. Marquez, A. Peregrín, and F. Herrera, “Cooperative Evolutionary Learning of Linguistic Fuzzy Rules and Parametric Aggregation Connectors for Mamdani Fuzzy Systems,” Fuzzy Systems, IEEE Transactions on, vol. 15, pp. 1162-1178, 2007.
[18] Y. H. Chang, W. S. Chan, and C. W. Chang, “T-S Fuzzy Model-Based Adaptive Dynamic Surface Control for Ball and Beam System,” IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2251-2263, 2013.
[19] Y. J. Liu, and S. Tong, “Adaptive Fuzzy Control for a Class of Nonlinear Discrete-Time Systems With Backlash,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 5, pp. 1359-1365, 2014.
[20] J. A. Rodger, “A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings,” Expert Systems with Applications, vol. 41, no. 4, Part 2, pp. 1813-1829, 3//, 2014.
[21] T. Wang, “Indirect adaptive fuzzy output feedback control for nonlinear MIMO system,” IEEE Conf. Int. Contr. and Auto., vol. 1, pp. 502-505, June 2004.
[22] T. Yiqian, W. Jianhui, G. Shusheng, and Q. Fengying, “Fuzzy adaptive output feedback control for nonlinear MIMO systems based on observer,” IEEE Conf. Int. Contr. and Auto., vol. 1, pp. 506-510, June 2004.
[23] S. Tong and Y. Shi, “Adaptive fuzzy output feedback control for nonlinear MIMO systems,” IEEE Conf. Fuzzy Syst., vol. 3, pp. 1209-1213, July 2004.
[24] H. X. Li and S. Tong, “A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems,” IEEE Trans. Fuzzy Systs., vol. 11, no. 1. pp. 24-34, Feb. 2003.
[25] H. Xu and P. A. Ioannou, “Robust adaptive control for a class of MIMO nonlinear systems with guaranteed error bounds,” IEEE Trans. Auto. Cont., vol. 48, no. 5, pp. 728-742, May 2003.
[26] P. C. K. Luk, L. L. Lai, and T. L. Tong, “GA optimisation of rule base in a fuzzy logic control of a solar power plant,” in Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on, 2000, pp. 221-225.
[27] I. B. Aydilek, and A. Arslan, “A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm,” Information Sciences, vol. 233, pp. 25-35, 6/1/, 2013.
[28] N. Öztürk, and E. Çelik, “Speed control of permanent magnet synchronous motors using fuzzy controller based on genetic algorithms,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 889-898, 12//, 2012.
[29] K. G. Osgouie, and A. Azizi, “Optimizing fuzzy logic controller for diabetes type I by genetic algorithm,” in Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on, 2010, pp. 4-8.
[30] A. Arabali et al., “Genetic-Algorithm-Based Optimization Approach for Energy Management,” IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 162-170, 2013.
[31] E. De Santis, A. Rizzi, A. Sadeghiany, and F. M. F. Mascioli, “Genetic optimization of a fuzzy control system for energy flow management in micro-grids,” in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, 2013, pp. 418-423.
[32] Chi-Hsu Wang et al., “Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 5, pp. 841-851, 1995.
[33] C.-T. Lin, C.-J. Lin, and C. S. G. Lee, “Fuzzy ControlFuzzy adaptive learning control network with on-line neural learning,” Fuzzy Sets and Systems, vol. 71, no. 1, pp. 25-45, 1995/04/14, 1995.
[34] Y. Jae Young, “A genetic algorithm approach to design an optimal fuzzy controller for rectifier current control in HVDC system,” in Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 1998, pp. 404-409.
[35] Y. Kijima, R. Ohtsubo, S. Yamada, and H. Fujikawa, “An optimization of fuzzy controller and its application to overhead crane,” in Industrial Electronics, Control, and Instrumentation, 1995., Proceedings of the 1995 IEEE IECON 21st International Conference on, 1995, pp. 1508-1513 vol.2.
[36] H. Wen-Ruey, and S. Zein-Sabatto, “Fuzzy controller design using genetic algorithms,” in Southeastcon 97. Engineering new New Century., Proceedings. IEEE, 1997, pp. 6-10.
[37] L. Yao, Jen-nan Jiang, and Tung-bin Lin, “Observer Based Adaptive Fuzzy Controller with Modulated Membership Functions for Nonlinear System,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 24, no. 01, pp. 137-159, 2016.
[38] L. Yao, and P. Z. Huang, “Learning of Hybrid Fuzzy Controller for the Optical Data Storage Device,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 1, pp. 3-13, 2008.
[39] Z. Chen, L. Wu, and Y. Fu, “Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1822-1831, 2012.
[40] X. H. Li and S. H. Hong, “User-expected price-based demand response algorithm for a home-to-grid system,” Energy, vol. 64, no. pp. 437-449, 2014.
[41] E. Matallanas, M. Castillo-Cagigal, A. Gutiérrez, F. Monasterio-Huelin, E. Caamaño-Martín, D. Masa, et al., “Neural network controller for Active Demand-Side Management with PV energy in the residential sector,” Appl. Energ., vol. 91, no. 1, pp. 90-97, 2012.
[42] M. Rastegar, M. Fotuhi-Firuzabad, and F. Aminifar, “Load commitment in a smart home,” Appl. Energ., vol. 96, no. pp. 45-54, 2012.
[43] O. Erdinc, “Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households,” Appl. Energ., vol. 126, no. pp. 142-150, 2014.
[44] M. Pipattanasomporn, M. Kuzlu, and S. Rahman, “An algorithm for intelligent home energy management and demand response analysis,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 2166-2173, 2012.
[45] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Hardware demonstration of a home energy management system for demand response applications,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1704-1711, 2012.
[46] Shahgoshtasbi, D. and M. M. Jamshidi “A New Intelligent Neuro-Fuzzy Paradigm for Energy-Efficient Homes.” IEEE Systems Journal, vol.8, no.2, pp. 664-673, 2014.
[47] Y. Riffonneau et al., “Optimal Power Flow Management for Grid Connected PV Systems With Batteries,” IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 309-320, 2011.
[48] J. Lagorse, M. G. Simoes, and A. Miraoui, “A Multiagent Fuzzy-Logic-Based Energy Management of Hybrid Systems,” IEEE Transactions on Industry Applications, vol. 45, no. 6, pp. 2123-2129, 2009.
[49] Y. Wang, X. Lin, and M. Pedram, “A Near-Optimal Model-Based Control Algorithm for Households Equipped With Residential Photovoltaic Power Generation and Energy Storage Systems,” IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 77-86, 2016.
[50] D. Linden and T. B. Reddy, Handbook of Batteries. New York, NY, USA:McGraw-Hill, 2001.
[51] X. Chen, T. Wei, and S. Hu, “Uncertainty-Aware Household Appliance Scheduling Considering Dynamic Electricity Pricing in Smart Home,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 932-941, 2013.
[52] E. M. Natsheh, A. R. Natsheh, and A. Albarbar, “Intelligent controller for managing power flow within standalone hybrid power systems,” IET Science, Measurement & Technology, vol. 7, no. 4, pp. 191-200, 2013.
[53] http://www.nyiso.com/public/index.jsp,NYISO
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔