跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 13:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐建銘
研究生(外文):Chee, Kian-Ming
論文名稱:應用於直流微電網之獨立供電型太陽能系統
論文名稱(外文):Applying Stand-Alone Solar PV Power System to DC Microgrid
指導教授:胡國英
指導教授(外文):Kuo-Ing Hwu
口試委員:姚宇桐林志鴻謝振中
口試日期:2016-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:數位訊號處理器鉛酸電池最大功率追蹤高升壓轉換器太陽能系統獨立供電型直流微電網
外文關鍵詞:Digital Signal ProcessorLead-Acid BatteryMaximum Power Point TrackingHigh Step-Up ConverterSolar Cell SystemStand-Alone SystemDC Microgrid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係提出一應用於直流微電網之獨立供電型太陽能系統,此系統之架構是由一個高升壓型轉換器與雙向轉換器結合而來。本論文所提之高升壓型轉換器架構是利用耦合電感及能量傳遞電容來達到高電壓增益比與回收漏感能量,此外,此轉換器具有輸入電流連續;雙向轉換器架構則是使用傳統具同步整流之降壓式轉換器來達到電池雙向充放電之功能。由於電池的充/放電運作,故可透過高升壓型轉換器將太陽能板所輸出的電壓升壓至負載端所需之電壓值,並藉由最大功率追蹤控制將太陽能在任何輸出下所產生的能量擷取後送至負載或將此能量全部或部分藉由雙向直流轉換器對蓄電池充電。因此電池可儲存太陽能多餘的能量,當夜間或氣候條件不佳造成日照不足時提供能量至負載端。同時,採用數位訊號處理器TMS320F28335來做為電路控制之核心以實現獨立供電型太陽能系統之能量分配控制。於本論文中,首先針對所採用之電路架構,進行動作原理說明與分析,緊接著藉由模擬及實驗來驗證其可行性,最後再藉由實驗結果來驗證所提之高升壓轉換器搭配雙向轉換器可應用於直流微電網之獨立供電型太陽能系統中。
In this thesis, a stand-alone solar cell system is presented and applied to the DC microgrid. Such a system is mainly constructed by a high step-up converter and a bidirectional converter. By using the coupling inductor and the energy transferring capacitor, the proposed high step-up converter can achieve high step-up voltage gain as well as leakage inductance energy recycling. In addition, this converter possesses the continuous input current. As for the bidirectional converter, it is established by the traditional synchronously-rectified (SR) buck converter which can charge/discharge the battery. Due to the high step-up converter and the battery charging/discharging operation, the voltage outputted from the cell can be boosted up to the voltage required by the load. By means of the maximum power point tracking (MPPT), the energy created from the solar cell can be captured, pumped to the load, and/or passed to the battery. Therefore, the battery can store the redundant solar cell energy and provides energy to the load at night or in unfavorable weather. At the same time, the digital signal processor, named TMS320F28335, is used as a control kernel so as to realize the energy budget control for the stand-alone solar cell system. In this thesis, as to the used circuits, their operating principles are firstly described and analyzed, and then their feasibility and effectiveness are demonstrated by simulation and experiment. Eventually, some experimental results are provided to certify that this solar cell system constructed by the proposed high step-up converter and the bidirectional converter can be applied to the DC microgrid.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 xi
圖目錄 xiii
第一章 緒論 1
1.1研究動機及目的 1
1.2研究方法 16
1.3論文內容架構 18
第二章 太陽能發電原理與其最大功率追蹤演算法以及鉛酸電池種類與各式充電方法 19
2.1前言 19
2.2太陽能電池特性 19
2.2.1太陽能電池光伏轉換原理 19
2.2.2太陽能電池種類 20
2.2.3太陽能電池之等效電路 21
2.2.4太陽能電池之輸出特性曲線 24
2.3最大功率追蹤演算法 27
2.3.1開路電壓法 28
2.3.2短路電流法 28
2.3.3實際量測法 29
2.3.4擾動觀察法 29
2.3.5增量電導法 30
2.3.6三點權位法 31
2.4鉛酸電池特性 35
2.4.1鉛酸電池原理 35
2.4.2鉛酸電池種類 36
2.5鉛酸電池使用方式 36
2.5.1鉛酸電池的保養與壽命 36
2.5.2鉛酸電池充放電特性 39
2.5.3電池電量之量測 42
2.6儲能電池等效模型 43
2.6.1電池理想模型 44
2.6.2電池線性模型 44
2.6.3電池戴維寧等效模型 45
2.6.4電池等效電容模型 45
2.7儲能電池充電方法 46
第三章 所提之高升壓轉換器與傳統雙向直流-直流轉換器 51
3.1前言 51
3.2所提之高升壓轉換器架構 51
3.2.1電路說明 51
3.2.2電路符號定義及假設 52
3.3轉換器之動作原理及其相關理論推導 54
3.3.1動作原理分析 54
3.3.2電壓轉換比推導 58
3.3.3輸入電感電流之邊界條件 59
3.4雙向直流-直流轉換器 61
3.5雙向直流-直流轉換器之降壓模式架構 61
3.5.1電路說明 61
3.5.2電路符號定義及假設 62
3.6具同步整流之降壓型轉換器之動作原理分析及其相關理論推導 64
3.6.1動作原理分析 64
3.6.2電壓轉換比推導 65
3.6.3輸出電感電流之邊界條件 65
3.7雙向直流-直流轉換器之升壓模式架構 67
3.7.1電路說明 67
3.7.2電路符號定義及假設 67
3.8具同步整流之升壓型轉換器之動作原理分析及其相關理論推導 69
3.8.1動作原理分析 69
3.8.2電壓轉換比推導 70
3.8.3輸入電感電流之邊界條件 70
第四章 硬體電路設計 72
4.1前言 72
4.2系統架構 72
4.3系統規格 73
4.3.1太陽能模組規格 73
4.3.2鉛酸電池規格 74
4.3.3所提之高升壓轉換器規格 75
4.3.4所採用之傳統雙向直流-直流轉換器規格 75
4.4所提之高升壓轉換器之元件規格設計 76
4.4.1符號定義 76
4.4.2耦合電感設計 80
4.4.3開關元件與二極體之選配 92
4.4.4能量傳遞電容與輸出電容設計 97
4.4.5驅動電路設計 99
4.5所採用之傳統雙向直流-直流轉換器之元件規格設計 100
4.5.1符號定義 100
4.5.2可變動電壓之責任週期推導 103
4.5.3電感設計 104
4.5.4開關元件的選配 110
4.5.5濾波電容設計 111
4.5.6驅動電路設計 113
4.6取樣電路設計 114
4.6.1電壓取樣電路設計 114
4.6.2電流取樣電路設計 115
4.6.2.1太陽能輸入端電流取樣電路設計 115
4.6.2.2電池端電流取樣電路設計 117
4.7元件總表 119
4.7.1所提之高升壓轉換器的元件規格表 119
4.7.2所採用之雙向直流-直流轉換器的元件規格表 119
第五章 軟體規劃及控制流程 120
5.1前言 120
5.2 DSP TMS320F28335簡介 120
5.2.1 DSP TMS320F28335晶片說明 121
5.2.2類比數位轉換器(ADC)模組 123
5.2.2增強型脈波寬度調變器(EPWM)模組 123
5.2.4外部中斷函數(Interrupt)模組 124
5.3程式動作流程 125
5.3.1 ADC模組 127
5.3.2 PI運算模組 128
5.3.3 MPPT運算模組 130
5.3.4系統判斷運算模組 133
5.3.4.1系統模式判斷控制流程 133
5.3.4.2電池放電控制流程 135
5.3.4.3電池充電控制流程 136
5.3.4.4太陽能控制流程 137
5.3.4.5軟啟動控制流程 138
5.3.4.6旗標模組控制流程 139
5.3.5 EPWM模組 140
第六章 模擬與實作波形 141
6.1前言 141
6.2電路模擬結果 141
6.2.1本論文所提之架構之電路模擬波形圖 142
6.3所提之高升壓轉換器實驗波形 149
6.3.1於不同負載下之量測波形圖 149
6.3.2所提之高升壓轉換器負載變動波形 167
6.3.2.1輸出負載由10%加載至50%及50%卸載至10% 167
6.3.2.2輸出負載由50%加載至100%及100%卸載至50% 168
6.3.2.3輸出負載由10%加載至100%及100%卸載至10% 169
6.4雙向直流-直流轉換器實驗波形 172
6.4.1在降壓模式於不同負載下之量測波形圖 172
6.4.2在升壓模式於不同負載下之量測波形圖 178
6.5獨立供電型太陽能系統實驗波形 184
6.5.1最大功率追蹤電路之量測 184
6.5.1.1最大功率追蹤電路之量測波形圖 185
6.5.2鉛酸電池充放電電路之量測 188
6.5.2.1鉛酸電池充放電電路於充電模式之量測波形圖 189
6.5.2.2鉛酸電池充放電電路於放電模式之量測波形圖 191
6.5.3系統整合之量測 192
6.5.3.1系統啟動時之量測波形圖 194
6.5.3.2系統於穩態時之量測波形圖 195
6.6效率量測 213
6.6.1轉換器之效率對負載的關係圖 213
6.6.2系統之效率對負載的關係圖 216
第七章 討論 219
7.1前言 219
7.2所提架構與文獻電路之討論 219
7.3所提架構及文獻之電壓轉換比 221
第八章 結論與未來展望 223
8.1結論 223
8.2未來展望 223
參考文獻 225
符號彙編 235
[1] http://mail.tlsh.tp.edu.tw/~t127/peopleword/new_page_1.htm
[2] http://www.iea.org/media/etp/ETP2008.PDF
[3] http://www.ey.gov.tw/Upload/RelFile/19/722940/20060b1d-e8f3-4cf8-96ae-690f394fc9e8.pdf
[4] http://twycc.org.tw/blog_and_news/9249/%E6%B1%BA%E5%AE%9A%E5%9C%B0%E7%90%83%E6%9C%AA%E4%BE%86%E7%9A%8412%E5%A4%A9%EF%BC%9A%E5%B8%B6%E4%BD%A0%E7%9C%8B%E6%87%82%E8%81%AF%E5%90%88%E5%9C%8B%E6%B0%A3%E5%80%99%E8%AE%8A%E5%8C%96%E7%B6%B1%E8%A6%81/
[5] http://www.epa.gov.tw/public/Data/61141084671.pdf
[6] Ahmed Abu Hussein and Mohd. Hasan Ali, “Comparison among series compensators for transient stability enhancement of doubly fed induction generator based variable speed wind turbines,” IET Renewable Power Generation, vol. 10, no. 1, pp. 116-126, 2016.
[7] Peerapat Vithayasrichareon and Iain F. MacGill, “Valuing large-scale solar photovoltaics in future electricity generation portfolios and its implications for energy and climate policies” IET Renewable Power Generation, vol. 10, no. 1, pp. 79-87, 2016.
[8] Egill Benedikt Hreinsson, “Stream-flow capacity shaved energy distribution in hydroelectric power systems,” UPEC’15, pp. 1-6, 2015.

[9] Marius Ovidiu Neamtu and Nistor Daniel Trip, “A geothermal generator for grid greenhouse electrical power generator for supplying microgrid,” EDPE’15, pp. 173-176, 2015
[10] Marios C. Sousounis, Jonathan K. H. Shek, and Markus A. Mueller, “Filter design for cable overvoltage and power loss minimization in a tidal energy system with onshore converters,” IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 400-408, 2016.
[11] http://web.epa.gov.tw/QuickFind/Q32.htm
[12] http://www.pv-magazine.com/fileadmin/PDFs/pv_magazine_02_2015_CN_web_150DPI.pdf
[13] C. Olalla, C. Deline, D. Clement, Y. Levron, M. Rodriguez and D. Maksimovic, “Performance of power-limited differential power processing architectures in mismatched PV systems,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 618-631, 2015.
[14] Bailu Xiao, Lijun Hang, Jun Mei, Cameron Riley, Leon M. Tolbert and Burak Ozpineci, “Modular cascaded H-bridge multilevel PV inverter with distributed MPPT for grid-connected applications,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1722-1731, 2015.
[15] Lexuan Meng, Xin Zhao, Fen Tang, Mehdi Savaghebi, Tomislav Dragicevic, Juan C. Vasquez and Josep M. Guerrero, “Distributed voltage unbalance compensation in islanded microgrids by using a dynamic consensus algorithm,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 827-838, 2016.
[16] Daniel Gonzalez Montoya and Carlos Andres Ramos-Paja, “Improved design of sliding-mode controllers based on the requirements of MPPT techniques,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 235-247, 2016.
[17] Nicolae-Cristian Sintamarean, F. Blaabjerg and H. Wang, “Reliability oriented design tool for the new generation of grid connected PV-inverters,” IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2635-2644, 2015.
[18] Hua F. Xiao, Ke Lan, Bin Zhou, Li Zhang and Zaijun Wu, “A family of zero-current-transition transformerless photovoltaic grid-connected inverter,” IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3156-3165, 2015.
[19] D. Debnath and K. Chatterjee, “Two-stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4148-4157, 2015.
[20] Moumita Das and Vivek Agarwal, “A novel control strategy for stand-alone solar PV systems with enhanced battery life,” IEEE APEC’14, pp. 2880-2887, 2014.
[21] Rajesh Singh Farswan, Huma Khan and B. G. Fernandes, “A low cost reliable stand-alone photo-voltaic system,” IEEE PEDES’ 14, pp. 1-6, 2014.
[22] Yong-Won Cho, Woo-Jun Cha, Jung-Min Kwon and Bong-Hwan Kwon, “High-efficiency bidirectional DAB inverter using a novel hybrid modulation for stand-alone power generating system with low input voltage,” IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4138-4147, 2016.
[23] Guishi Wang, Mihai Ciobotaru and Vassilios G. Agelidis, “Power smoothing of large solar PV plant using hybrid energy storage,” IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 834-842, 2014.
[24] Zheng Wang, Shouting Fan, Yang Zheng and Ming Cheng, “Design and analysis of a CHB converter based PV-battery hybrid system for better electromagnetic compatibility,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4530-4533, 2012.
[25] Ritwik Chattopadhyay and Kishore Chatterjee, “PV based stand alone single phase power generating unit,” IEEE IECON’ 12, pp. 1138-1144, 2012.
[26] Hong Wang and Donglai Zhang, “The stand-alone PV generation system with parallel battery charger,” IEEE ICECE’ 10, pp. 4450-4453, 2010.
[27] Hong Wang and Bing Li, “The cooperated MPPT control of stand-alone PV power generation system,” IEEE WCICA’ 10, pp. 2228-2231, 2010.
[28] 吳財福,綠色能源直流供電系統介紹,國立中正大學九十八學年度第一學期中正講座,民國98年11月11日。
[29] 林建宏,整合不同電源形態之直流微電網併接技術之研究,國立中山大學碩士論文,民國100年8月。
[30] Christine Chan, “DC Microgrids,” CSE 291, 2013.Available:http://cseweb.ucsd.edu/~trosing/lectures/dcmicrogrid.pdf
[31] Rajendra Singh and Krishna Shenai, “DC microgrids and the virtues of local electricity,” IEEE Spectrum, 2014.
[32] Dong-Keun Jeong, Ju-Won Baek, Jin-Tae Cho, Hee-Je Kim and Jee-Hoon Jung, “Test-bed implementation of DC microgrid in islanding mode,” ICPE-ECCE ASIA’ 15, pp. 1736-1741, 2015.
[33] Andre Pires Nobrega Tahim and Daniel J. Pagano, “Modeling and stability analysis of islanded DC microgrids under droop control,” IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4597-4607, 2015.
[34] Arash M. Dizqah, Alireza Maheri, Krishna Busawon and Azadeh Kamjoo, “A multivariable optimal energy management strategy for standalone DC microgrids,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2278-2287, 2015.
[35] Xiaonan Lu, Kai Sun, Josep M. Guerrero, Juan C. Vasquez and Lipei Huang, “Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 147-157, 2015.
[36] Chi Jin, Peng Wang, Jianfang Xiao, Yi Tang and Fook Hoong Choo, “Implementation of hierarchical control in DC microgrids,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4032-4042, 2014.
[37] An EPRI White Paper, “DC power production delivery and utilization,” 2006.
[38] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell: Kluwer Academic Publishers, 2001.
[39] K. I. Hwu and Y. T. Yau, “KY converter and its derivatives,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 128-137, 2009.
[40] K. I. Hwu and Y. T. Yau, “A KY boost converter,” IEEE Transactions on Power Electronics, vol. 25, no. 11, pp. 2699-2703, 2010.
[41] K. I. Hwu, K. W. Huang and W. C. Tu, “Step-up converter combining KY and buck-boost converters,” IET Electronics Letters, vol. 47, no. 12, pp. 722-724, 2011.
[42] K. I. Hwu and W. C. Tu, “Voltage-boosting converters with hybrid energy pumping,” IET Power Electronics, vol. 5, no. 2 , pp. 186-195, 2012.
[43] K. I. Hwu and T. J. Peng, “High-voltage-boosting converter with charge pump capacitor and coupling inductor combined with buck-boost converter,” IET Power Electronics, vol. 7, no. 1, pp. 177-188, 2014.
[44] K. I. Hwu and W. Z. Jiang, “Voltage gain enhancement for a step-up converter constructed by KY and buck-boost converters,” IEEE Transactions on Power Electronics, vol. 61, no. 4, pp. 1758-1768, 2014.
[45] K. I. Hwu, C. F. Chuang and W. C. Tu, “High voltage-boosting converters based on bootstrap capacitors and boost inductors,” IEEE Transactions on Power Electronics, vol. 60, no. 6, pp. 2178-2193, 2013.
[46] K. I. Hwu and Y. T. Yau, “High step-up converter based on coupling inductor and bootstrap capacitors with active clamping,” IEEE Transactions on Power Electronics Letters, vol. 29, no. 6, pp. 2655-2660, 2014.
[47] Ching-Tsai Pan and Ching-Ming Lai, “A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applocations,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 1998-2006, 2010.
[48] Ali Ajami, Hossein Ardi and Amir Farakhor, “A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications,” IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4255-4263, 2015.
[49] Liping Zhou, Dongyuan Qiu, Wenxun Xiao and Bo Zhang, “A single-switch high step-up DC-DC converter with coupled inductor,” IEEE ECCE’14, pp. 4252-4256, 2014.
[50] Jae-Kuk Kim and Gun-Woo Moon, “Derivation, analysis, and comparison of nonisolated single-switch high step-up converters with low voltage stress,” IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1336-1344, 2015.
[51] F. Evran and M. T. Aydemir, “Isolated high step-up DC-DC converter with low voltage stress,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3591-3603, 2014.
[52] Zhangyong Chen and Jianping Xu, “High boost ratio DC-DC converter with ripple-free input current,” IET Electronics Letters, vol. 50, no. 5, pp. 353-355, 2014.
[53] Rong-Jong Wai, Lian-Sheng Hong and Jun-Jie Liaw, “High-efficiency bidirectional single-input multiple-output power converter,” IET Power Electronics, vol. 7, no. 5, pp. 1278-1293, 2014.
[54] Tsorng-Juu Liang, Hsiu-Hao Liang, Shih-Ming Chen, Jiann-Fuh Chen and Lung-Sheng Yang, “Analysis, design, and implementation of a bidirectional double-boost DC-DC converter,” IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3955-3962, 2014.
[55] A. A. Hagar and P. W. Lehn, “Comparative evaluation of a new family of transformerless modular DC-DC converters for high-power applications,” IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 444-452, 2014.
[56] Shiying Hou and Jianfei Chen, “A high step-up converter based on switched-capacitor voltage accumulator,” IEEE ECCE’14, pp. 1671-1677, 2014.
[57] Kuo-Ching Tseng, Jang-Ting Lin and Chi-Chih Huang, “High step-up converter with three-winding coupled inductor for fuel cell energy source applications,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 574-581, 2015.
[58] Yu Tang, Ting Wang and Dongjin Fu, “Multicell switched-inductor switched-capacitor combined active-network converters,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2063-2076, 2015.
[59] Yu Tang, Ting Wang and Yaohua He, “A switched-capacitor-based active-network converter with high voltage gain,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2959-2968, 2014.
[60] H. Al-Atrash and I. Batarseh, “Digital controller design for a practicing power electronics engineer,” IEEE APEC’07, pp. 34-41, 2007.
[61] W. Stefanutti, S. Saggini, E. Tedeschi, P. Mattavelli and P. Tenti, “Simplified model reference tuning of PID regulators of digitally controlled DC-DC converters based on crossover frequency analysis,” IEEE PESC’07, pp. 785-791, 2007.
[62] Mohammad Faridun Naim Tajuddin and Nasrudin Abdul Rahim, “Small-signal AC modeling technique of buck converter with DSP based Proportional-Integral-Derivative (PID) controller,” IEEE ISIEA’09, pp. 904-909, 2009.
[63] http://www.pida.org.tw/optolink/optolink_pdf/97057512.pdf
[64] http://www.aetes.com/YUASA/pdf/YUASA_NP7-12.pdf
[65] CSB公司之小型密閉式鉛酸蓄電池技術手冊 Available: http://www.csb-battery.com/chine/03_support/01_support.php?fid=2
[66] Yoon-Ho Kim and Hoi-Doo Ha, “Design of interface circuits with electrical battery models,” IEEE Transactions on Industrial Electronics, vol. 44, no. 1, pp. 81-86, 1997.
[67] Z. M. Salameh, M. A. Casacca and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Transactions on Energy Conversion, vol. 7, no. 1, pp. 93-98, 1992.
[68] M. A. Casacca and Z. M. SalamehM., “Determination of lead-acid battery capacity via mathematical modeling techniques,” IEEE Transactions on Energy Conversion, vol. 7, no. 3, pp. 442-446, 1992.
[69] 賴世榮,智慧型鋰離子電池殘存電量估測之研究,國立中山大學碩士論文,民國93年10月。
[70] Xiaohui Qu, Hongdou Han, Siu-Chung Wong, Chi K. Tse and Wu Chen, “Hybrid IPT topologies with constant current or constant voltage output for battery charging applications,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6329-6337, 2015.
[71] Bo-Yuan Chen and Yen-Shin Lai, “New digital-controlled technique for battery charger with constant current and voltage control without current feedback,” IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1545-1553, 2012.
[72] Guan-Chyun Hsieh, Liang-Rui Chen and Kuo-Shun Huang, “Fuzzy-controlled li–ion battery charge system with active state-of-charge controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 585-593, 2001.
[73] Liang-Rui Chen, Roy Chaoming Hsu and Chuan-Sheng Liu, “A design of a grey-predicted li-ion battery charge system,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3692-3701, 2008.
[74] Bo-Yuan Chen, Chin-Chang Hsu and Yen-Shin Lai, “Novel current limitation technique without current feedback for digital-controlled battery charger in UPS applications,” IEEE ECCE’10, pp.4351-4355, 2010.
[75] Liang-Rui Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 398-405, 2007.
[76] Liang-Rui Chen, “Design of duty-varied voltage pulse charger for improving Li-Ion battery-charging response,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 480-487, 2009.
[77] L. R. Chen, J. J. Chen, N. Y. Chu and G. Y. Han, “Current-pumped battery charger,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2482-2488, 2008.
[78] K. C. Tseng, T. J. Liang, J. E Chen and M. T. Chang, “High frequency positive/negative pulse charger with power factor correction,” IEEE PSEC’02, pp. 671-675, 2002.
[79] Y. S. Chu, R. Y. Chen, T. J. Liang, S. K. Changchien and J. F. Chen, “Positive/negative pulse battery charger with energy feedback and power factor correction,” IEEE APEC’05, pp. 986-990, 2005.
[80] LEM公司之LA100-P技術手冊 Available: http://www.europowercomponents.com/media/uploads/la100-p.pdf
[81] 德州儀器(Texas Instruments, TI)公司之TMS320F28335技術手冊 Available: http://www.ti.com/lit/ds/symlink/tms320f28335.pdf
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊