(3.236.122.9) 您好!臺灣時間:2021/05/09 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳裕純
研究生(外文):Yu-Chun Chen
論文名稱:考慮暫態現象之饋線終端單元過電流偵測曲線最佳化設定
論文名稱(外文):Feeder Terminal Unit Overcurrent Detecting Curve Optimal Setting Including Transient Situation
指導教授:陳昭榮陳昭榮引用關係
指導教授(外文):Chao-Rong Chen
口試委員:李振弘章其鈞曾國雄李清吟
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:粒子群優法、饋線終端單元、故障電流、智慧型電子裝置、配電保護
外文關鍵詞:Particle Swarm Optimization(PSO)Feeder Terminal Unit(FTU)Fault CurrentIntelligent Electronic Device(IED)Power Distribution Protection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
配電系統利用饋線自動化的事故偵測、隔離及復電功能以達成系統保護功能。為避免停電區域擴大,設置保護電驛及設定保護協調來隔離故障區域。饋線終端單元過電流偵測曲線係依據通過智慧型電子裝置之故障電流及跳脫時間之關係所構成之曲線,此曲線應介於智慧型電子裝置保護協調曲線和熔絲曲線間。本論文提出饋線終端單元過電流偵測曲線設定之新策略,此偵測曲線提供事故旗標設置依據並且藉由此旗標來協助饋線自動化系統執行故障偵測、隔離與復電功能,以及避免受熔絲後端分歧線事故之影響。
論文中提出目標函式來評估標誌設定之成效。應用粒子群優法來求得過電流偵測曲線之最佳位置,粒子群優法採多代理人模式,具有記憶性與非盲目搜索之特性,藉由粒子間資訊交流,進而達到整體最佳解。新策略能平均減少20%偵測位置所形成之面積,並且可依據暫態發生多寡情形來設定權重大小,減少暫態現象造成之誤標誌。新策略將對饋線自動化系統故障偵測、隔離與復電有所貢獻。
Fault detection, isolation and restoration of feeder automation system can protect power distribution system. To avoid the blackout region expanded, protection relays are installed and coordinated to isolate the fault area. Feeder terminal unit overcurrent detecting curve is consisting of the fault current and trip time through intelligent electronic device (IED). This curve should be between the IED protection coordination curve and the fuse curve. This paper present a new strategies of the feeder terminal unit overcurrent detecting curve. The flag setting is according to the curve and assist the feeder automation system implement fault detection, isolation, restoration and avoid accident from mistake of branch lines rear of fuses.
This paper present an objective function to assess the effectiveness of the flag. Using particle swarm optimization(PSO) to obtain the best position of the flag of current detection curve. PSO uses multi agent strategies, it has the characteristics of memory and non-blind search. With the exchange information from each particle to reach the overall best solution. The new strategy can reduce average 20% area formed by the detected position. The weight setting according to the transient situation. Can reduce transient phenomena cause of the error flag. The new strategies will contribution to feeder automation system FDIR.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 1
1.3 研究目的與方法 5
1.4 主要研究貢獻 6
1.5 論文內容概述 7
第二章 智慧電網與配電自動化 8
2.1 智慧電網 8
2.2 配電自動化 10
2.2.1 SCADA系統 12
2.2.2 饋線終端單元 13
2.2.3 故障偵測、隔離與復電 14
2.2.4 智慧型電子裝置 16
2.2.5 智慧型電子裝置過電流保護參數設定 17
第三章 粒子群優法理論 18
3.1 粒子群優法 18
3.2 粒子群優法特性 19
3.3 粒子群優法之流程與流程說明 19
第四章 過電流偵測曲線位置設定最佳化分析 24
4.1 過電流偵測曲線位置設定最佳化數學式 25
4.2 粒子群優法求解過電流偵測曲線位置分析 27
4.3 二分搜尋法求解過電流偵測曲線分析 30
第五章 案例分析與討論 34
5.1 模擬案例 34
5.2 案例分析用參數設定 36
5.3 模擬結果 37
5.3.1 VI型電驛FTU過電流偵測曲線 38
5.3.2 EI型電驛FTU過電流偵測曲線 45
5.3.3 LI型電驛FTU過電流偵測曲線 52
5.3.4 VI型電驛含權重FTU過電流偵測曲線 59
5.3.5 EI型電驛含權重FTU過電流偵測曲線 66
5.3.6 LI型電驛含權重FTU過電流偵測曲線 72
5.4 結果與討論 79
第六章 結論與未來研究方向 81
6.1 結論 81
6.2 未來研究方向 82
參考文獻 83
符號彙編 86
[1]C.R. Chen, and C.J. Chang, ʻʻHalf-Interval Method Applied in Feeder Terminal Unit Overcurrent Detecting Curve Setting,ˮ IEEE Trans. Power Delivery, vol. 30, no. 4, August 2015, pp.1898-1905.
[2]C.H. Lin, H.J. Chuang, C.S. Chen, C.S. Li, and C.Y Ho,ʻʻFault Detection, Isolation and Restoration using a Multiagent-Based Distribution Automation System,ˮ ICIEA 2009. 4th IEEE Conference on Industrial Electronics and Applications, Xian, China, 25-27 May 2009, pp.2528-2533.
[3]C. R. Ozansoy, A. Zayegh, and A. Kalam,ʻʻObject Modeling of Data and DataSets in the Intermational Standard IEC 61850,ˮ IEEE Trans. Power Delivery, vol. 24, no. 3, July 2009, pp.1140-1147.
[4]A. Zidan, and E.F. El-Saadany, ʻʻA Cooperative Multiagent Framework for Self-Healing Mechanisms in Distribution System,ˮ IEEE Trans. Smart Grid, vol. 3 no. 3, September 2012, pp.1525-1539.
[5]章其鈞,新型饋線自動化系統自我療癒機制,博士論文,國立台北科技大學電機工程系,台北,2015。
[6]王建欽,應用模擬退火法於饋線末端通訊設備之時間-電流協調曲線最佳設定,碩士論文,南榮技術學院工程科技研究所碩士班,台南,2013。
[7]許家源,應用多重粒子群演算法於配電饋線末端通訊設備之 時間-電流協調曲線最佳設定,碩士論文,國立高雄應用科技大學電機工程系博碩士班,高雄,2014。
[8]ʻʻ台灣電力公司供電系統簡介,ˮ [Online] Available: http://www.taipower.com.tw/index.aspx
[9]ʻʻSystem & Optimization Aspects of Smart Grid Challenges 2013,ˮ [Online] Available: http://sgc2013.arizona.edu/
[10]M. Pipattanasomporn, H. Feroze, and S. Rahman, ʻʻMulti-Agent Systems in a Distributed Smart Grid: Design and Implementation,ˮ PSCE 09. IEEE/PESPower Systems Conference and Exposition, Seattle, WA, 15-18 March 2009, pp.1-8.
[11]G. Han, B. Xu, K. Fan, and G. Lv, ʻʻAn Open Communication Architecture for Distribution Automation Based on IEC 61850,ˮ International Journal of Electrical Power and Energy Systems, vol. 54, January 2014, pp.315-324.
[12]A. M. Grilo, J.Chen, M. Díaz, D. Garrido, and A. Casaca, ʻʻAn Integrated WSAN and SCADA System for Monitoring a Critical Infrastructure,ˮ IEEE Trans. Industrial Informatics, vol. 10, no. 3, August 2014, pp.1755-1764.
[13]H. Zhou, X. Luo, and Q. Deng, ʻʻThe Design and Development of DSP Based Ring Main Unit FTU (Feeder Automation Terminal Unit) in Intelligent Distribution,ˮ ICECE 2010 International Conference on Electrical and Control Engineering, Wuhan, China, 26-28 June 2010, pp.2299-2302.
[14]李振弘,電力系統過電流保護協調最佳化之研究,博士論文,國立台北科技大學電機工程系,台北,2013。
[15]ʻʻSiemens PTD EA Applications for SIPROTEC Protection Relays,ˮ 2005[Online] Available: http://www.quadindustry.com/titan_img/ecatalog/Applications_SIPROTEC_ complete_en.pdf
[16]Inverse-Time Characteristic Equations for Overcurrent Relays, IEEE std.C37. 112-1996.
[17]許文興,「69kV 二次系統過電流電驛保護協調實務」,電驛協會會刊,第36期,第31-52頁。
[18]彭雲忠,「69kV 系統之電驛標置協調最佳化實例探討」,電驛協會會刊,第34期,2012年,第24-31頁
[19]J. Kennedy, R.C. Eberhart, ʻʻParticle Swarm Optimization,ˮ IEEE International Conf. on Neural Networks, Perth; Aust, vol. 4, 27 November-1 December1995, pp.1942-1948.
[20]J. Sun, V. Palade, X.J. Wu, W. Fang, and Z. Wang, ʻʻSolving the Power Economic Dispatch Problem with Generator Constraints by Random Drift Particle Swarm Optimization,ˮ IEEE Trans. Industrial Informatics, vol. 10, no. 3, February 2014, pp.222-232.
[21]A. Selakov, D. Cvijetinovi´c, L. Milovi´c, S. Mellon, and D. Bekut, ʻʻHybrid PSO-SVM Method for Short-term Load Forecasting during Periods with Significant Temperature Variations in City of Burbank,ˮ Applied Soft Computing Journal, vol. 16, March 2014, pp.80-88.
[22]J. Yang, L. He, and S. Fu, ʻʻAn Improved PSO-based Charging Strategy of Electric Vehicles in Electrical Distribution Grid,ˮ Applied Energy, vol. 128, September 2014, pp.82-92.
[23]J. Robinson, and Y. Rahmat-Samii,ʻʻParticle Swarm Optimization in Electromagnetics,ˮ IEEE Trans. Antennas and Propagation, vol. 52, no. 2, February 2004, pp. 397-407.
[24]Y. Shi, and R. Eberhart, ʻʻA Modfifed Particle Swarm Optimizer,ˮ The 1998 IEEE International Conference on Evolutionary Computation Proceeding, Anchorage, AK, 4-9 May 1998, pp.69-73.
[25]R. Eberhart, and Y. Shi, ʻʻParticle swarm optimization Developments, Applications and Resources,ˮ Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, vol. 1, May 2001, pp.81-86.
[26]F. Sayedin, A. Maroufmashat, R. Roshandel, amd S.S. Khavas ʻʻOptimal Design and Operation of a Photovoltaic Electrolyser System Using Particle Swarm Optimisation,ˮ International Journal of Sustainable Energy, vol. 35, no. 6, July 2016, pp.566-582.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔