(3.210.184.142) 您好!臺灣時間:2021/05/16 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林祐賢
研究生(外文):You-Shyan Lin
論文名稱:基於Android智慧型手機之跌倒偵測系統設計與實現
論文名稱(外文):Design and Implementation of Fall Detection Systems Using Android Smartphones
指導教授:李俊賢李俊賢引用關係
口試委員:熊甘霖許佳興高立人
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:三軸加速度感測器手機位置智慧型手機跌倒檢測
外文關鍵詞:Tri-axial accelerometerMobile positionSmartphoneFalling detection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,許多國家都面臨到人口老化的問題,台灣老年人口的比例已達到11.99%,屬於高齡化的社會,現有的老年人多半會聘請看護員進行看護,但無法全天候進行照護,而當有意外發生時,會有沒人照顧和救援的疑慮,故跌倒檢測的研究更為重要。
現有的跌倒檢測研究中,根據設備的不同可分為環境感測式和穿戴感測式。穿戴感測式的研究中,還有使用手機來做檢測跌倒,將手機放置在褲子前口袋中,就可以判斷跌倒的發生,使用手機裡面的三軸加速度計、陀螺儀、方位感測器等等,但固定放置在一處,會造成使用者的不舒適。
本文是使用手機來做跌倒檢測,解決手機固定放置位置的缺點,可將手機放置在四個位置,分別是褲子前口袋、上衣口袋、腰包和背包中。透過手機內建的三軸加速度計,蒐集到三軸加速度計的值之後,透過我們的演算法,及可過濾多種日常生活行為,同時也能偵測到四種跌倒方向。當跌倒意外發生時,可由本系統進行判斷,進而發送訊息給救護端,透過GPS定位得知發生跌倒的地點,可在黃金時刻進行救援。
In recent years, many countries are facing the problem of an aging population. The proportion of elderly population in Taiwan, which is an aging society, has reach 11.99%. It is possible that the elderly would live by themselves or be without a caretaker at their side. If anything such as fall detection happens to the elderly, they might not be able to help by themselves. Thus it is important to study the fall detection.
According to sensors used, existing fall detection studies can be divided into environment and wearable sensing types. Studies with wearable sensing types, such as placing a smartphone in the pocket of the trousers, one can determine the occurrence of falls through the tri-axial accelerometer, gyroscope, orientation sensors and electronic compass, which are set in the mobile phone.
Overcoming the problem of setting the mobile phone in a fixed position and unease for the user, the current study proposes four different possible positions. Some parameters are collected through the built-in three-axis accelerometer. It not only can filter different kinds of daily activities, but also detect the four directions for the fall through algorithms. When fall accident occurs, the system would send a message to the rescue end. Through the GPS positioning, rescuing teams can know the location of the right away, and the user can be rescued within the golden time.
摘 要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
1.3文獻回顧 3
1.3.1 環境感測之相關研究 3
1.3.2 穿戴感測之相關研究 5
1.3.3 使用智慧型手機之跌倒偵測系統 (單一位置) 7
1.3.4 使用智慧型手機之跌倒偵測系統 (多種位置) 8
1.4 問題陳述 11
1.5 研究方法 11
1.6 研究貢獻 12
1.7 論文架構 13
第二章 相關背景知識介紹 14
2.1 Android作業系統 14
2.1.1 Linux Kernel (Linux核心) 15
2.1.2 Libraries (函式庫) 15
2.1.3 Android Runtime (Android執行環境) 15
2.1.4 Application Framework (應用程式框架) 16
2.1.5 Application (應用程式) 16
2.2 加速度感測器 17
2.3 手機放置方向對三軸加速度計的影響 19
2.4 老人跌倒姿態分析 21
2.5 跌倒偵測相關研究之比較 23
第三章 本論文之研究方法 24
3.1 系統架構 24
3.1.1 Android手機硬體架構 25
3.1.2 Android開發環境建構 26
3.2 數據蒐集 27
3.2.1 特徵擷取-SVM (Signal Vector Magnitude, SVM) 28
3.2.2 特徵擷取-SMA (Signal Magnitude Area, SMA) 28
3.2.3 特徵擷取-xMean、zMean 29
3.2.4 特徵擷取-SM訊號 30
3.3 多種位置功能設計 33
3.4 跌倒偵測功能設計 38
第四章 實驗結果與分析 42
4.1 實驗環境 42
4.2 使用者操作介面 44
4.3 判斷手機位置結果與分析 45
4.4 跌倒偵測實驗結果與分析 47
4.5 整體系統實驗結果與分析 53
4.6 實驗結果之比較 54
4.7系統救援服務 61
第五章 結論 63
5.1 結論 63
5.2 未來發展 64
參考文獻 65
[1]“中華民國人口推計,國家發展委員會”, [Online]. Available: http://www.ndc.gov.tw/Content_List.aspx?n=84223C65B6F94D72
[2]“世界衛生組織”, [Online]. Available: http://www.who.int/zh/。
[3]“衛生福利部”, [Online]. Available: http://www.mohw.gov.tw/CHT/Ministry/Index.aspx。
[4]梁煙純,「12招預防老人跌倒」,康健雜誌,第九十期
[5]T. Tamura, T. Yoshimura, M. Sekine, M. Uchida, and O. Tanaka, “A wearable airbag to prevent fall injuries,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 6 , pp. 910-914, Nov. 2009.
[6]W. Y. Shieh and J. C. Huang, “Speedup the multi-camera video-surveillance system for elder falling detection,” in Proc. IEEE. Int. Conf. Embedded Software and Systems, Zhejiang, China, May 2009, pp. 350-355.
[7]V. Vaidehi, K. Ganapathy, K. Mohan, A. Aldrin, and K. Nirmal, “Video based automatic fall detection in indoor environment,” in Proc. IEEE Int. Conf. Recent Trends in Information Technology, Chennai, Tamil, Nadu, June 2011, pp. 1016-1020.
[8]A. Edgcomb and F. Vahid, “Automated fall detection on privacy-enhanced video,” in Proc. IEEE Annual Int. Conf. Engineering in Medicine and Biology Society, San Diego, California, USA, Aug. 2012, pp. 252-255.
[9]Y. Zigel, D. Litvak, and I. Gannot, “A method for automatic fall detection of elderly people using floor vibrations and sound—proof of concept on human mimicking doll falls,” IEEE Trans. Biomedical Engineering, vol. 56, no. 12, pp. 2858-2867, Dec. 2009.
[10]A. Sixsmith, N. Johnson, and R. Whatmore, “Pyroelectric IR sensor arrays for fall detection in the older population,” Journal de Physique IV, vol. 128, pp. 153-160, Sep. 2005.
[11]李金榮、鄭武堯、謝志強,「壓電陶瓷環境感測技術之居家照顧跌倒偵測系統」,第十一屆離島資訊與應用研討會論文,澎湖,2012,第388-397頁。
[12]E. E. Stone and M. Skubic, “Fall detection in homes of older adults using the microsoft kinect,” IEEE J. Biomedical and Health Inform., vol. 19, no. 1, pp. 290-301, Jan. 2015.
[13]C. J. Chong, W. H. Tan, Y. C. Chang, M. F. N. Batcha, and E. Karuppiah, “Visual based fall detection with reduced complexity horprasert segmentation using superpixel,” in Proc. IEEE Int. Conf. Networking, Sensing and Control, Taipei, Taiwan, April 2015, pp. 462-467.
[14]J. He, C. Hu, and Y. Li, “An autonomous fall detection and alerting system based on mobile and ubiquitous computing,” in Proc. IEEE 10th Int. Conf. Ubiquitous Intelligence and Computing and Autonomic and Trusted Computing, Beijing, China, Dec. 2013, pp. 539-543.
[15]W. C. Cheng and D. M. Jhan, “Tri-axial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier,” IEEE J. Biomedical and Health Inform., vol. 17, no. 2, pp. 411-419, Mar. 2013.
[16]L. Tong, Q. Song, Y. Ge, and M. Liu, “HMM-based human fall detection and prediction method using tri-axial accelerometer,” IEEE. Sensors J., vol. 13, no. 5, pp. 1849-1856, May 2013.
[17]J. Cheng, X. Chen, and M. Shen, “A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals,” IEEE J. Biomedical and Health Informatics, vol. 17, no. 1, pp. 38-45, Jan. 2013.
[18]“蓋德科技”, [Online]. Available: http://www.guidercare.com/Joomla/index.php/
[19]O. Ojetola, E. I. Gaura, and J. Brusey, “Fall detection with wearable sensors-safe (Smart Fall Detection),” in Proc. IEEE Int. Conf. Intelligent Environments, Nottingham, UK, July 2011, pp. 318-321.
[20]Y. Li, G. Chen, Y. Shen, Y. Zhu, and Z. Cheng, “Accelerometer-based fall detection sensor system for the elderly,” in Proc. IEEE Int. Conf. Cloud Computing and Intelligent Systems, Hangzhou, China, Oct. 2012, pp. 1216-1220.
[21]J. K. Lee, S. N. Robinovitch, and E. J. Park, “Inertial sensing-based pre-impact detection of falls involving near-fall scenarios,” IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 23, no. 2, pp. 258-266, Mar. 2015.
[22]A. Sorvala, E. Alasaarela, H. Sorvoja, and R. Myllyla, “A two-threshold fall detection algorithm for reducing false alarms,” in Proc. IEEE Int. Symp. Medical Information and Communication Technology, Oulu, Finland, Mar. 2012, pp. 1-4.
[23]L. J. Kau and C. S. Chen, “A smart phone-based pocket fall accident detection, positioning and rescue system,” IEEE J. Biomedical and Health Inform., vol. 19, no. 1, pp. 44-56, Jan. 2015.
[24]曾宣翰,基於Android手機之銀髮族跌倒偵測系統,碩士論文,國立台北科技大學,電機工程系研究所,台北,2015。
[25]S. H. Fang, Y. C. Liang, and K. M. Chiu, “Developing a mobile phone-based fall detection system on Android platform,” in Proc. IEEE. Int. Conf. Computing, Communications and Applications, Jan. 2012, pp.143-146.
[26]羅祥祐,基於Android智慧型手機之多位置量測跌倒偵測系統之研製,碩士論文,國立台北科技大學,電腦與通訊研究所,台北,2013。
[27]L. N. V. Colon, Y. DeLaHoz, and M. Labrador, “Human fall detection with smartphones,” in Proc. IEEE Int. Conf. Communications, Cartagena, Colombia, Nov. 2014, pp. 1-7.
[28]S. L. Hsieh, K. R. Chen, C. L. Yeh, and C. C. Chen “An unfixed-position smartphone-based fall detection scheme,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, San Diego, California, Oct. 2014, pp. 2077 - 2081.
[29]D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, “Implementation of a real-time human movement classifier using a tri-axial accelerometer for ambulatory monitoring,” IEEE Trans. Inform. Technology in Biomedicine, vol. 10, no. 1, pp. 156-167, Jan. 2006.
[30]黃彬華,Android 5.X App開發教戰手冊—使用Android studio開發,碁峰出版社,2015年6月。
[31]王安邦,Android 4.4 APP開發之鑰-使用Java及eclipse,上奇資訊股份有限公司,2014年9月。
[32]Android 系統介紹,凌群電子報,第179期,2012年
[33]“Android studio官方網站”, [Online]. Available: https://developer.android.com/studio/index.html
[34]M. Dadafshar, and M. Integrated,加速度計和陀螺儀感測器:原理、檢測與應用,電子工程專輯,2014年7月。
[35]葉駿逸,MEMS慣性感測元件 加速度計與陀螺儀的創新應用與市場分析,DIGITIMES電子時報,2009年11月。
[36]N. Zhao,實現全功能計步器設計 三軸數位加速度計角色吃重,新電子,2011年1月。
[37]“ADXL330 ±3g三軸加速度感測器模組”, [Online]. Available: http://www.icshop.com.tw/product_info.php/products_id/2801
[38]“MMA7455 三軸加速度計模組”, [Online]. Available: http://www.playrobot.com/accelerometers/365-mma7455-3-axis-accelerometer-module.html
[39]“ADXL345Y 三軸加速度計”, [Online]. Available: http://www.playrobot.com/accelerometers/105-adxl345.html
[40]“SONY Xperia Z C6602 規格”, [Online]. Available: http://www.sonymobile.com/global-zh/products/phones/xperia-z/specifications/#white
[41]“Flash動畫技巧:人側面走路動畫設計”, [Online]. Available: http://www.missyuan.net/article/20070622/flash_13883.html
電子全文 電子全文(網際網路公開日期:20210701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top