(3.238.235.155) 您好!臺灣時間:2021/05/16 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱瑞隆
研究生(外文):Juei-Long Chiu
論文名稱:電火花製備奈米銀膠體溶液及其對真菌類抗菌效益之研究
論文名稱(外文):A Study of Nanosilver Colloid Prepared by EDM and its Microbial Control Benefits
指導教授:曾國雄曾國雄引用關係
指導教授(外文):Kuo-Hsiung Tseng
口試委員:高文秀俞齊山曾昭衡陳昭榮周至如李清吟
口試日期:2016-07-23
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
中文關鍵詞:電火花放電奈米銀膠體抗菌抑菌真菌青黴菌麴菌酵母菌黑麴菌黃麴菌
外文關鍵詞:EDMElectrical Discharge MachineNanosilver ColloidantifungalMicrobialFungiPenicilliumAspergilliusYeastNigerFlavous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在於建立一套放電能量與成功率之監測系統,以取代傳統的示波器觀察法以及對奈米銀膠體溶液進行真菌類的抑菌(Microbial Control)試驗。前者的優點在於可即時觀察放電情形,進而作實驗紀錄及優化放電的參數設定,實驗結果顯示製備奈米銀膠體時,EDM(Electrical Discharge Machine)放電參數中的責任週期(Ton-Toff)以10-100µs的性價比(Cost Performance)為最佳。此外,監控系統還可利用放電成功率來控制電極的耗能,達到產物的標準化,結果顯示放電成功率、電極損失重量與吸收峰值波長的精準度相當高;放電成功率監控系統為創新的方法,能掌握放電加工的情況,優化產物的品質,在未來可說是製程上的利器。
在奈米銀膠體溶液對真菌類的抑菌試驗方面,包含了青黴菌(Penicillium)、酵母菌(Yeast)、黑麴菌(Aspergillius niger)、黃麴黴菌(Aspergillius flavous)的抑菌試驗,實驗過程中也與相同濃度的銀離子標準溶液進行了抗菌的比較,本研究提供了客觀的數據以為參考依據。由於利用EDM所製備的奈米銀膠體溶液不具任何的化學添加物,相較於其他製備方法,更適合用於生物科技上,甚至於人體上的應用。
The key points of this dissertation is to build a discharge energy and success rate monitoring system to replace the traditional oscillograph observation method and dissert the microbial control test for the nanosilver colloid. The advantage of this system is that the discharge condition can be observed instantly, in order to record experiments and optimize discharge parameter settings. The experimental results show that, in the preparation of nanosilver colloid, the cost performance is the best when the Duty Cycle (Ton-Toff) of the EDM (Electrical Discharge Machine) discharge parameters is from 10μs-100μs. In addition, the monitoring system can use the arcing rate to control the energy consumption of electrodes to standardize the product. The results show that the arcing rate, electrode weight loss, and absorption peak wavelength are very accurate. The arcing rate monitoring system is an innovative method, the EDM condition can be mastered, and the quality of a product is optimized, thus, it is an efficient instrument for process in the future.
The microbial control test for the nanosilver colloid, including Penicillium, Yeast, Aspergillius niger, and Aspergillus flavus. The effectiveness is compared with the standard silver ion solution at the same concentration as the experimental process. This dissertation provides objective data as a reference frame. The nanosilver colloid, as prepared by EDM, is free of any chemical additive, and in comparison to other preparation methods, it is more applicable to biotechnology, even to the human body.
摘 要..................................................................I
ABSTRACT...............................................................II
誌謝...................................................................IV
Contents...............................................................VI
List of Tables.........................................................IX
List of Figures........................................................XI
Chapter 1 INTRODUCTION................................................1
1.1 Research background................................................1
1.2 Research motivations and purposes..................................5
1.3 Research method and procedures.....................................6
1.3.1 Research method..................................................6
1.3.2 Research procedures..............................................8
1.4 Contributions......................................................9
1.5 Architecture of dissertation.......................................9
Chapter 2 LITERATURE REVIEW...........................................11
2.1 Analysis of documents regarding nanosilver colloid.................11
2.1.1 Nano material preparation methods ...............................11
2.1.2 Suspension mechanism and dispersion theory.......................13
2.1.3 Preparation of nanosilver colloid by electric spark..............20
2.1.4 Silver ion.......................................................23
2.2 Analysis of documents regarding fungi..............................24
Chapter 3 EXPERIMENTAL METHOD AND DESIGN..............................28
3.1 Experimental process description...................................28
3.2 Instrumentations for preparing silver nanofluid....................30
3.2.1 Electrical discharge machine (EDM)...............................31
3.2.2 Precision balance................................................32
3.2.3 UV-Visible Spectroscopy..........................................32
3.2.4 Laser light scatterometer .......................................33
3.2.5 SEM..............................................................34
3.3 Nanofluid discharge parameter monitoring feedback system development..35
3.3.1 Experimental results and discussion..............................39
3.4 Instrumentations and materials description.........................46
3.4.1 The experimental equipment description...........................46
3.4.2 The experimental materials for disseatating microbial control effectiveness.....46
3.5 Microbial control test method and design...........................47
3.5.1 Preparation and characteristic data..............................47
3.5.2 Activation and cultivation of strains............................58
3.5.3 Experimental design and procedure................................59
3.6 Measurement of silver ion concentration............................63
Chapter 4 RESULTS AND DISCUSSION......................................67
4.1 Research on the microbial control effectiveness of nanosilver colloid...67
4.1.1 Bathroom sample..................................................68
4.1.2 Penicillium......................................................70
4.1.3 Aspergillus niger................................................72
4.1.4 Aspergillus Flavus...............................................74
4.1.5 Yeast............................................................76
4.2 Inhibition zone test result and discussion.........................78
4.3 Microbial control cotton pad test result and discussion............79
4.4 Comprehensive discussion...........................................79
4.4.1 The results of microbial control test by 3M Petrifilm............79
4.4.2 Effect of microbial control (by 3M Petrifilm)....................80
4.4.3 The results of inhibition zone tests.............................81
Chapter 5 CONCLUSION AND FUTURE STUDIES...............................86
5.1 Conclusion.........................................................86
5.1.1 Development of the discharge parameter monitoring feedback system..86
5.1.2 Nanosilver colloid microbial control experiment..................87
5.2 Future studies.....................................................88
REFERENCE..............................................................90
APPENDEX...............................................................100
A. Technique sheet of Aspergillius flavus..............................100
B. Technique sheet of Aspergillius niger...............................102
C. Technique sheet of 3M Petrifilm™....................................103
Author’s biography.....................................................105
Publication list.......................................................106
[1] Roukes, M. 2001. Plenty of Room, Indeed. Scientific American. 9: 48-57.
[2]http://www.particlesciences.com/news/technical-briefs/2012/glossary-of-drug-nanotechnology.html
[3] https://www.materialsnet.com.tw/DocView.aspx?id=14983, Journal of Industrial Materials, Vol. 331
[4]http://www.materialsnet.com.tw/DocView.aspx?id=8237 (access June, 2016)
[5]http://www.materialsnet.com.tw/DocView.aspx?id=7212 (access June, 2016)
[6]http://www.nanotec.org.uk/Health%20final.pdf
[7] Braydich-Stolle, L.,S. Hussain, J. J. Schlager. and M. Hofmann. "In vitro cytotoxicity of nanoparticles in mammalian germline stem cells", Toxicol in Vitro, 88(2): 412–419, 2005.
[8] Hussain, S. M., K. L. Hess., J. M. Gearhart, K. T. Geiss. and J. J. Schlager. "In vitro toxicity of nanoparticles in BRL 3A rat liver cells", Toxicol in Vitro, 19: 975–983, 2005.
[9] Hussain, S. M., M. K. Javorina., A. M. Schrand., H. M. Duhart., S. F. Ali.and J. J. Schlager. "The interaction of manganese nanoparticles with PC-12 cells Induces dopamine depletion". Toxicol, 92(2): 56–463, 2006.
[10] White, J. M., A. M. Powell. and K. Brady. "Severe generalizedargyria secondary to ingestion of colloidal silver protein", Clin. Experiment. Derm. 28(3): 254-256, 2003.
[11] Hori, K., T. G. Martin. and P. Rainey. "Believe it or not--silver still poisons", Vet. Human Toxicol. 44(5): 291-292, 2002.
[12] Kyung Hwan Cho, Jong Eun Park, Tetsuya Osaka, Soo Gil Park, "The study of antimicrobial activity and preservative effects of nanosilver ingredient", Electrochimica Acta, Vol. 51.5, pp.956-960, 2005.
[13] Sotiriou, Georgios A. and Storiris E. Pratsinis, "Antibacterial activity of nonosilver ions and particles", Envirinmental Science & Technology, Vol. 44.14, pp. 649-5654, 2010.
[14] Der-Chi Tien, "Ionic Silver in Colloidal Silver Prepared by Electric Spark Discharge System", PhD dissertation. Mechenical and Electrical Engineering, NTUT, 2009.
[15] Der-Chi Tien, Kuo-Hsiung Tseng, Chih-Yu Liao, Jen-Chuen Huang, Tsing-Tshih Tsung, "Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method", Journal of Alloys and Compounds, Vol.463, Issues 1-2, pp.408-411, September 2008.
[16] Kuo-Hsiung Tseng, Heng-Lin Lee, Der-Chi Tien, Ya-Lan Tang, and Yi-Syuan Kao, "A Study of Antibioactivity of Nanosilver Colloid and Silver Ion Solution", Advances in Materials Science and Engineering, Vol.2014, pp.1-6, September 2014.
[17] Der-Chi Tien, Kuo-Hsiung Tseng, Chih-Yu Liao, and Tsing-Tshih Tsung, "Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus", Medical Engineering & Physics, Vol. 30(8), pp.948-952, October 2008.
[18] Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O. "A mechanistic study of theantibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus ", J Biomed Mater Res 52, pp.662-668, 2000.
[19] Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. "Effect of silver on burn wound infection control and healing: review of the literature", Burns 33, pp.139-48, 2007.
[20] Percival S.L., Bowler P.G., Russell D. "Bacterial resistance to silver in wound care ", J Hosp Infect. 60, pp.1-7, 2005.
[21] Wang J.X., Wen L.X., Wang Z.H., Chen J.F. "Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects", Mater. Chem. Phys, pp. 90-97, 2006.
[22] Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P and Dash D. "Characterization of enhanced antibacterial effects of novel silver nanoparticles ", Nanotechnol, pp.1-9, 2007.
[23] Li Y., Leung P., Yao L., Song Q.W., Newton E. "Antimicrobial effect of surgical masks coated with nanoparticles ", J Hosp Infect, pp. 58-63, 62 2006.
[24]C.-H. Lo, T.-T. Tsung, and H.-M. Lin, "Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS)," Journal of Alloys and Compounds, 2007.
[25]H. Chang and M.-K. Liu, "Fabrication and process analysis of anatase type TiO2 nanofluid by an arc spray nanofluid synthesis system", Journal of Crystal Growth, Vol. 304, pp. 244-252, 2007.
[26]N. Ichinose, Y. Ozaki, and S. Kashu, "Superfine particle technology", London, New York, Springer, 1990.
[27]D.-C. Tien, K.-H. Tseng, C.-Y. Liao, J.-C. Huang, and T.-T. Tsung, "Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method", Journal of Alloys and Compounds, Vol. 463, pp. 408-411, 2008.
[28]Guo-Long Chen, "Preperation of suspensions high stable nano zirconia crystal particles of concentration", Institute of Chemical Engineering, Master thesis, NCU, 2000.
[29] F. Mafune, J. Kohno, Y. Takeda, T. Knodow and H. Sawabe, "Formation of AuNPs by Laser Ablation in Aqueous Solution of Surfactant", Journal of Physical Chemistry B, Vol. 105, No. 22, pp. 5114-5120, 2001.
[30] F. Mafune, J. Kohno, Y. Takeda, T. Knodow and H. Sawabe, "Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation", Journal of Physical Chemistry B, Vol. 104, No. 35, pp. 8333-8337, 2000.
[31] J. S. Bradly, "The chemistry of transition metal colloids in clusters and colloids", G. Schmid Edition, VCH Publishers, New York, USA, pp. 459-530, 1994.
[32] M. T. Reetz, M. winter, R. Bieinhauer and T. Thomas, "Site-selective synthesis of nanostructural transition metal clusters", Journal of the American Chemical Society, Vol. 116, pp. 7401-7401,1994.
[33] K. Okitsu, H. Bandow and Y. Maeda, "Sonochemical preparation of ultrafine palladium particles", Chemistry of Materials, Vol. 8, No. 2, pp. 315- 317,1996.
[34] K. Okitsu, H. Bandow, Y. Maeda, T. A. Yamamoto, Y. Nagata and Y. Mizukoshi, "Synthesis of palladium particles with interstitial carbon by sonochemical reduction of tetrachloropalladate (II) in aqueous solution", Journal of Physical Chemistry B, Vol. 101, No. 28, pp. 5470-5472, 1997.
[35] J.N. Jana, L. Geavheart and C. J. Murphy, "Evidence for seed-mediated nucleation in the chemical reduction of gold salt to AuNPs", Chemistry of Materials, Vol. 13, No. 7, pp. 2313-2322, 2001.
[36] J. Turkevich, P. C. Stevenson and J. Hillier, "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discussions of the Faraday Society, Vol. 11, pp. 55-75, 1951.
[37] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. Plech, "Turkevich Method for Gold Nanoparticle Synthesis Revisited", Journal of Physical Chemistry B, Vol. 110, No. 32, pp. 15700-15707, 2006.
[38] G. Frens, "Particle size and sol stability in metal colloids", Colloid & Polymer Science ,Vol. 250, No. 7, pp. 736-741, 1972.
[39] G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions", Nature Physical Science, Vol. 241, pp. 20-22, 1973.
[40] M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. lark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, P M. Dorter, E N. Dvans and R. W. Murray, "Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a Function of Core Size ", Langmuir, Vol. 14, No.1, pp. 17-30, 1998.
[41] Z. S. Pillai and P. V. Kamat, "What factors control the size and shape of silver nanoparticles in the citrate ion reduction method", Journal of Physical Chemistry B, Vol. 108, No. 3, pp. 945-951, 2004.
[42] D. Bethell, M. Brust, D. J. Schiffrin and C. Kiely, "From monolayers to nanostructured materials: An organic chemists view of self-assembly ", Journal of Electroanalytical Chemistry, Vol.409, pp. 137-143, 1996.
[43] M. Brust and C. J. Kiely, "Some recent advances in nanostructure preparation from gold and silver: A short topical review", Colloids of Surface A: Physicochemical Engineering Aspects, Vol. 202, pp. 175-186, 2002.
[44] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman. "Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system", Chemical Communication, pp. 801-802, 1994.
[45] A. Manna, P. Chen, H. Akiyama, T. Wei, K. Tamada and W. Knoll. "Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides", Chemistry of Materials, Vol. 15, No.1, pp. 20–28, 2003.
[46] M. S. Tsao, C. B. Kuan and C. C. Hsu, "Introduction to nanomaterial", University of Haerhping, Shenyang, China, 1998.
[47] D. Morrison and S. Ross, "Colloidal dispersion: Suspensions, emulsions and foams", Wiley Interscience, New York, 2002.
[48] B. V. Derjaguin and L. Landau, "Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes", Acta Physico Chemica, URSS, Vol. 14, pp. 633-662, 1941.
[49] E. J. W. Verwey and J. Th. G. Overbeek, "Theory of the stability of lyophobic colloids", Elsevier, Amsterdam, 1948.
[50] W. B. Russel, D. A. Saville and W. R. Schowalter, "Colloidal Dispersions", Cambridge University Press, New York, 1989.
[51] Reece, M.P., "The vacuum switch. part 1: Properties of the vacuum arc", The Proceedings of the Institution of Electrical Engineers, Vol.110, Issue: 4, pp. 793-802, April 1963.
[52] Sanjeev Kumar, Rupinder Singh, T.P. Singh and B.L. Sethi, "Surface modification by electrical discharge machining: A review", Journal of Materials Processing Technology, Vol. 209, pp. 3675–3687, 2009.
[53] M Schnick, U Fusse, M Hertel, A Spille-Kohoff and A B Murphy3, "Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission", Journal of Physics D: Applied Physics, Vol. 43 No. 2, Dec. 2009.
[54] Kuo-Hsiung Tseng and Jen-Chuen Huang, "Pulsed spark-discharge assisted synthesis of colloidal gold nanoparticles in ethanol", Journal of Nanoparticle Research, Vol. 13, No.7, pp.2963-2972, July 2011.
[55] D.-C. Tien, C.-Y. Liao, J.-C. Huang, K.-H. Tseng, J.-K. Lung and T.-T. Tsung, " Novel technique for preparing a nano-silver water suspension by the arc-discharge method", Reviews on Advanced Materials Science, Vol.18, No.8, pp.750-756, March 2008.
[56] Kuo-Hsiung Tseng, Jen-Chuen Huang, Kuan-Chih Chen, and Chih-Yu Liao, "Preparation of metal nano-fluid via electrical discharge machining", pp.2711-2716, 2011 6th IEEE Conference on Industrial Electronics and Application, Beijing, China, 21-23 June, 2011.
[57] Chih-Yu Liao, Kuo-Hsiung Tseng, and Hong-Shiou Lin, "Preparation of metallic aluminum compound particles by submerged arc discharge method in aqueous media", Metallurgical and Materials Transactions B, Vol.44, Issue 1, pp.91-97, February 2013.
[58] Ho Chang, Tsing-Tshih Tsung and Chih-Hung Lo. "A study of nanoparticle manufacturing process using vacuum submerged arc machining with aid of enhanced ultrasonic vibration", Journal of Material Science 40, 1005 – 1010, 2005.
[59] Der-Chi Tien, Kuo-Hsiung Tseng, Chih-Yu Liao, Tsing-Tshih Tsung, "Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study", Journal of Alloys and Compounds, Vol. 473, Issues 1-2, pp.298-302, 3 April 2009.
[60] Kuo-Hsiung Tseng, Heng-Lin Lee, Der-Chi Tien, Ya-Lan Tang, and Yi-Syuan Kao, "A study of antibioactivity of nanosilver colloid and silver ion solution", Advances in Materials Science and Engineering, Vol. 2014, pp, 1-6, 2014.
[61] Jiunn-Woei Liaw, Shiao-Wen Tsaib, Hung-Hsun Lina, Tzu-Chen Yend and Bae-Renn Cheng, "Wavelength-dependent Faraday–tyndall effect on laser-induced microbubble in gold colloid", Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.113, Issue 17, pp. 2234–2242, November 2012.
[62] Kuo-Hsiung Tseng, Yu-Chun Chen, Jing-Jong Shyue, "Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions", Journal of Nanoparticle Research, Vol. 13 No. 5 pp.1865-1872, 2011.
[63] Vincent Mann, Florian Hugger, Stephan Roth and Michael Schmidt, "Influence of temperature and wavelength on optical behavior of copper alloys", Vincent Mann et al. Applied Mechanics and Materials, Vol. 655, 89, 2014.
[64] S. F. Yu, B. Y. Lee and W. S. Lin, "Waveform monitoring of electric discharge machining by wavelet transform", The International Journal of Advanced Manufacturing Technology, Vol.17, Issue 5, pp 339-343, February 2001.
[65] Karel, Filiz, "Development of silver ion doped antibacterial clays and investigation of their antibacterial activity", Advances in Materials Science and Engineering Vol. 2015-02-12, pp. 1-6, 2015.
[66] Der-Chi Tien, Kuo-Hsiung Tseng, Chih-Yu Liao, Tsing-Tshih Tsung, "Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study", Journal of Alloys and Compounds, Vol. 473, Issues 1-2, pp.298-302, 3, April 2009.
[67] Margulis L. Schwartz K.V. & Dolan M. " Diversity of life: the illustrated guide to the five kingdoms", Jones & Bartlett, Sudbury MA, 1999.
[68] Samson RA, Houbraken J, Summerbell RC, Flannigan B, Miller JD. "Common and important species of fungi and actinomycetes in indoor environments", Microogranisms in Home and Indoor Work Environments, CRC. pp. 287–292. ISBN 0415268001, 2001.
[69] Abarca M, Bragulat M, Castellá G, Cabañes F. "Ochratoxin a production by strains of Aspergillus niger var. niger", Appl Environ Microbiol 60 (7): 2650–2. PMC 201698. PMID 8074536, 1994.
[70] Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW. "On the safety of Aspergillus niger—a review", Applied Microbiology and Biotechnology 59 (4–5): 426–35. doi:10.1007/s00253-002-1032-6, 2002.
[71] Klich MA, "Identification of common Aspergillus species", Utrecht, The Netherlands, Centraalbureau voor Schimmelcultures, 2002.
[72] Varga J., Kocsube S., Toth B., Frisvad J. C., Perrone G.,Susca A., Meijer M., Samson R. A. "Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution", International Journal of Systematic and Evolutionary Microbiology 57 (8): 1925, 2007.
[73] M. T. Hedayati, A. C. Pasqualotto, P. A. Warn, P. Bowyer, D. W. Denning, "Aspergillus flavus: human pathogen, allergen and mycotoxin producer." Microbiology Society, Vol. 153.6, pp.1677-1692, 2007.
[74] Kurtzman, C. P., B. W. Horn, and C. W. Hesseltine, "Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii", Antonie van Leeuwenhoek, Vol. 53.3 pp.147-158, 1987.
[75] Klich, MA., "Aspergillus flavus: the major producer of aflatoxin", Molecular Plant Pathology, 8 (6): 713–722 [2008-12-19], 2007.
[76] "Penicillium link 1809", MycoBank, International Mycological Association.
[77] Kirk PM, Cannon PF, Minter DW, Stalpers JA., "Dictionary of the Fungi (10th ed.) ", Wallingford, UK: CABI. pp. 505, ISBN 978-0-85199-826-8, 2008.
[78] Hoffman CS., Wood V., Fantes PA., "An ancient Yeast for young geneticists: A primer on the schizosaccharomyces pombe model system", Genetics 201 (2): 403–23, Oct. 2015.
[79] Yong E., "Yeast suggests speedy start for multicellular life", Nature News. Nature, 16 January 2012.
[80] Legras JL, Merdinoglu D, Cornuet JM, Karst F, "Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history", Molecular Ecology 16 (10): 2091–2102, 2007.
[81] "Bioprocess automation", Helsinki University of Technology, 2007.
[82] "What are yeasts", Yeast Virtual Library, 13 September 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top