跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:尤琬婷
研究生(外文):Wan-Ting You
論文名稱:具穩定性分析之自適應分享控制架構 應用於輪椅機器人並考慮人為錯誤保護
論文名稱(外文):Adaptive Shared Control Formation Synthesizing Stability Characteristics for a Robotic Wheelchair Considering Human Error
指導教授:蔣欣翰李俊賢李俊賢引用關係
指導教授(外文):Hsin-Han ChiangJin-Shyan Lee
口試委員:陳彥霖黃正民徐勝均
口試委員(外文):Yen-Lin ChenCheng-Ming HuangSendren Sheng-Dong Xu
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:人為失誤保護人機合作輪椅機器人輪椅穩定凸集合分析分享控制
外文關鍵詞:human error protectionhuman-robot collaborationrobotic wheelchairwheelchair stabilityconvex analysisShared control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
輪椅機器人可有效提供行動不便者有獨立移動性,減輕使用者負擔並維持自尊,但根據醫學報告指出全自動化操作的輔助並非適當的協助,因此,分享控制的概念被引入輪椅機器人。目前研究多依據使用者的生理訊號或場地的特徵來改變控制權重,然而這需要額外的感測器或在特定的環境執行,除了缺乏分享控制設計的穩定性分析,對於使用者人為操作失誤議題並無相關探討。因此本論文提出一個應用於輪椅機器人並可防止人為操作失誤的自適應分享控制系統。本系統採用雷射測距儀感測前方環境與輪椅機器人距離的變化,並分析控制系統之穩定性,以提高分享控制操作的可靠度與安全性。在理論發展部分,首先將輪椅機器人參考移動模型線性化,再利用林納德-奇帕特準則(Liénard-Chipart criterion)進行穩定性分析,以得到避障控制系統設計條件。接著整合機器人與使用者控制的分享控制設計,本論文使用凸集合分析法設計分享控制器的穩定性,使用者與機器人的控制命令各為凸集合,根據凸集合交集的穩定區間系統的控制權重作自適應的變化,系統經權重的分配後具安全並可靠的操作。
本論文所發展之自適應分享控制架構,可以提高使用者的操作安全性、降低操作負擔、及避免人為失誤產生的危險。最後,利用人為操作失誤中的技術失誤、決策失誤、與違規進行實驗,並以流暢度、平滑度、與完成時間評價標準來驗證本論文所提出人-機器人分享控制設計的有效性。
The robotic wheelchair can effectively provide the handicapped with independent mobility assistance. Although the operation burden can be reduced while respecting user’s self-esteem, the fully automated systems easily lead to loss of residual skills of user, and thus such systems are still questioned from the view of medical research. In decades, the concept of shared control is heavily raised in the human-wheelchair collaborative navigation.
Most studies currently adopt users physical characteristics and environmental characteristics to change the control weightings, that, however, requires additional sensors and limited applicable environments. In addition to the lack of stability analysis of shared control design, few studies are conducted to investigate about the users human error impact.
This thesis presents an adaptive shared controller on a robotic wheelchair robot which aims to enable the protection against human errors. In the proposed shared control system, a laser range finder is used to detect the distance data in the front of the robotic wheelchair. Further, the stability of the shared control system is analyzed to improve the system reliability and operation safety. In the developed method, the reference mobile model of robotic wheelchair is firstly linearized so that the stable characteristics in the obstacle avoidance behavior can be derived according to the Liénard-Chipart criterion. Next, by integrating the human input with robot control, the stability for the human-robot shared control is analyzed based on the convex analysis, in which the human input and the robot control are expressed as convex sets. Through the relationships among these two convex sets, the shared control system can self-adjust the control weightings between the human and the robot so that the safety and reliable operation can be guaranteed.
In summary, the adaptive shared control developed in this thesis is able to enhance the driving safety, reduce the operation burden, and get rid of the risk caused by human errors. Finally, the human errors including skill-based errors, decision errors, and violations are considered in the experimental conduction. To valid the proposed approach in an objective view, the assessment from the designed criteria with fluency, smoothness, and complete time efficiency are discussed.
摘 要 i
ABSTRACT ii
致謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 文獻回顧 2
1.3.1 任務級分享控制 3
1.3.2 伺服級分享控制 4
1.4 問題陳述 6
1.5 研究方法 7
1.6 實驗場景設計 7
1.7 研究貢獻 10
1.8 論文架構 10
第2章 系統架構 11
2.1 硬體架構簡介 11
2.1.1 載具平台 12
2.1.2 嵌入式控制器 12
2.1.3 雷射測距儀 16
2.1.4 電控模組 19
2.1.5 電源供應系統 22
2.2 軟體架構 22
2.2.1 軟體簡介 22
2.2.2 軟體開發環境 24
2.2.3 LabVIEW 感測器訊號處理 26
第3章 控制系統設計 27
3.1 避障控制設計 27
3.1.1 系統穩定性分析 30
3.1.2 穩定性參數Cϕ 36
3.2 分享控制器 39
3.2.1 凸集合穩定性分析 39
3.2.2 計算控制權重的演算法 41
3.3 自適應分享控制器 44
第4章 實驗結果 45
4.1 實驗規劃 45
4.1.1 人機控制介面 45
4.1.2 參數設定 46
4.1.3 實驗場景 47
4.1.4 評價標準 48
4.1.5 行走軌跡 49
4.2 實驗結果分析 50
4.2.1 正常操作 51
4.2.2 技術失誤 55
4.2.3 決策失誤 59
4.2.4 違規情況 63
4.2.5 實驗結果討論 71
第5章 結論與未來工作 72
5.1 結論 72
5.2 未來工作 73
參考文獻 74
[1]國家發展委員會,「中華民國人口推計(103至150年)」,民國103年8月。[Online]. Available:
http://www.ndc.gov.tw/Content_List.aspx?n=84223C65B6F94D72
[2]行政院主計總處,「103年底領有身心障礙證明(手冊)人數計114.2萬人」,民國104年5月21日。[Online]. Available:
http://www.dgbas.gov.tw/public/Data/5521163458Q5ISNJPV.pdf
[3]丁詩同,「輔助科技之研發及產業發展簡報」,行政院科技會報辦公室,104 年9月3日。 [Online]. Available:
http://www.slideshare.net/releaseey/ss-52366269
[4]B. M. Faria, L. P. Reis, and N. Lau, “Adapted control methods for cerebral palsy users of an intelligent wheelchair.” Journal of Intelligent & Robotic Systems, vol. 77, no. 2, pp. 299-312, Feb. 2015.
[5]A. Mihailidis, P. Elinas, J. Boger, and J. Hoey, “ An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 1, Mar. 2007.
[6]N. Uchiyama, T. Hashimoto, S. Sano, and S. Takagi, “ Obstacle avoidance control for a human-operated mobile robot,” in Proc. Advanced Motion Control, AMC08, Trento, Italy, Mar. 2008, pp.468-473.
[7]N. Uchiyama, T. Hashimoto, S. Sano, and S. Takagi, “Model-reference control approach to obstacle avoidance for a human-operated mobile robot,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3892-3896, Oct. 2009.
[8]S. P. Parikh, V. G. Jr., R. V. Kumar, and J. O. Jr., “Integrating human inputs with autonomous behaviors on an intelligent wheelchair platform,” IEEE Intell. Syst., vol. 22, no. 2, pp. 33-41, Apr. 2007.
[9]F. Janabi-Sharifi, and I. Hassanzadeh, “Experimental analysis of mobile-robot teleoperation via shared impedance control,” IEEE Trans. on Systems, Man, and Cybernetics-part B: Cybernetics, vol. 41, no. 2, pp.591-606, Apr. 2011.
[10]T. Carlson, and Y. Demiris, “Collaborative control for a robotic wheelchair: evaluation of performance, attention, and workload,” IEEE Trans. on Systems, Man, and Cybernetics-part B: Cybernetics, vol. 42, no. 3, pp. 876-888, Jun. 2012.
[11]Y. Uratsuji, K. Takemurab, J. Takamatsua, and T. Ogasawaraa, “Mobility assistance system for an electric wheelchair using annotated maps,” Advanced Robotics, vol. 29, no. 7 ,pp. 481-491, Apr. 2015.
[12]B. Khademian, and K. Hashtrudi-Zaad, “Dual-user teleoperation systems: New multilateral shared control architecture and kinesthetic performance measures,” IEEE/ASME Trans. Mechatronics, vol. 17, no. 5, pp. 895–906, Oct. 2012.
[13]C. Urdiales, B. F. Espejo, R. Annicchiaricco, and F. Sandoval, “Biometrically modulated collaborative control for an assistive wheelchair,” IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 18, no. 4, pp.398-408 , Aug. 2010.
[14]Q. Li, W. Chen, and J. Wang, “Dynamic shared control for human-wheelchair cooperation,” in Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 4278–4283.
[15]洪祖壬,人機整合之合作控制架構應用於輪椅型移動及導航輔助,碩士論文,天主教輔仁大學電機工程學系研究所,新北市,2013。
[16]W. Ren, and R. Beard, “Satisfying approach to human-in-the-loop safeguarded control,” in Proc. Amer. Control Conf., Oregon, USA, Jun. 2005, vol. 7, pp. 4985–4990.
[17]H. Wang, and X. P. Liu, “Adaptive shared control for a novel mobile assistive robot ,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 6, pp. 1725 - 1736, Dec. 2014.
[18]FAA. Human Factors Analysis and Classification System. US: Federal Aviation Administration, 2000.
[19]職業安全健康局。「人為失誤」,綠十字 GREEN CROSS,第25卷第六期,第22-26頁,2015。[Online]. Available: http://www.oshc.org.hk/download/publishings/1/2741/11.pdf。
[20]「cRIO-Real-Time – cRIO-9014 Specifications」,NI,2013。[Online]. Available: http://sine.ni.com/nips/cds/view/p/lang/zht/nid/203500。
[21]「Analog Output Module – NI 9263 Specifications」,NI,2010。[Online]. Available: http://sine.ni.com/nips/cds/view/p/lang/zht/nid/208806。
[22]“LabVIEW,維基百科”, [Online]. Available:
https://zh.wikipedia.org/wiki/LabVIEW
[23]“使用NI CompactRIO 掃瞄模式搭配 NI LabVIEW 軟體 ”, [Online]. Available: http://www.ni.com/white-paper/7338/zht/
[24]C. Jiang, X. Han, G.Y. Lu, J. Liu, Z. Zhang, and Y.C. Bai, “Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique,” Comput. Methods Appl. Mech. Eng., vol. 200, pp. 2528–2546, Aug. 2011.
[25]C. Jiang, B.Y. Ni, X. Han, and Y.R. Tao, “Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems,” Comput Methods Appl Mech Eng, vol. 268, pp. 656–676, Jan. 2014.
[26]F. R. Gantmacher, The Theory of Matrices, vol. 2, New York: Chelsea, 1959.
[27]內政部建築研究所,「建築物無障礙設施設計規範」,附錄一,A102,民國97年12月19日。[Online]. Available:
http://free.abri.gov.tw/law.php?id=175。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top