(3.236.222.124) 您好!臺灣時間:2021/05/08 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:羅世凱
研究生(外文):Shih-Kai Luo
論文名稱:利用觀測器改善無刷直流馬達驅動器速度回授之解析度
論文名稱(外文):Using Observers to Improve Velocity Feedback Resolution for Brushless DC Motor Drives
指導教授:楊勝明
口試委員:楊士進林詠凱
口試日期:2016-06-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電力電子產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:無轉角位置感測器反電動勢霍爾感測器速度觀測器
外文關鍵詞:Sensorless controlBack-EMFHall-effect sensorVelocity observer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
  在低成本應用之風扇系統中,通常採用霍爾感測器作為轉角位置回授,然而一般使用霍爾感測器作為回授時,多採用方波驅動法控制馬達,雖控制上容易,但會有噪音及輸出轉矩漣波的問題。而本論文以速度觀測器為核心,提高霍爾感測器之解析度,實現向量控制,並加入反電動勢之輔助,提升暫態響應及負載擾動之響應。
Hall-effect sensor usually used as a angular position feedback in the low-cost application fan system. However, square-wave current driving method used when hall-effect sensor as angular position feedback. Although, square wave driving method is simple, but there is a problem of noise and the output torque ripple. This paper focus on velocity observer design. To improve the resolution of the hall-effect sensor, and implement FOC, back-emf is using to improving transient response and load disturbance.
論文摘要I
英文摘要II
致謝III
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章馬達數學模型及控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 永磁同步馬達數學模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 定子座標軸轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 同步座標軸轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 永磁同步馬達數學模型. . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 向量控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 電流控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 速度控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 轉角位置回授. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 增量型編碼器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 霍爾感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 無刷永磁馬達開迴路驅動. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 120◦ 方波驅動. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 180◦ 方波驅動. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 開迴路啟動與閉迴路控制. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
第三章速度觀測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 速度觀測器之基本結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 狀態觀測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 永磁同步馬達速度觀測器. . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 速度觀測器與系統參數. . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 速度觀測器增益設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 以霍爾感測器輸入之速度觀測器. . . . . . . . . . . . . . . . . . . . . . . 33
3.4 以反電動勢輸入之速度觀測器. . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 整合霍爾感測器與反電動勢之速度觀測器. . . . . . . . . . . . . . . . . . 38
第四章實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 實驗系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 無刷馬達風扇系統實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 霍爾感測器之驅動實驗結果. . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 反電動勢之驅動實驗結果. . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 整合霍爾感測器與反電動勢之速度觀測器實驗結果. . . . . . . . . 53
4.3 速度觀測器與參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 慣量誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 轉矩常數誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 速度觀測器與系統頻寬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
第五章結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
符號說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
[1] Keith A. Corzine and S.D. Sudhoff. A hybrid observer for high performance brushless
dc motor drives. IEEE Transactions on, Energy Conversion, 11(2):318–323, 1996.
[2] Shigeo Morimoto, Masayulu Sanada, and Yoji Takeda. Sinusoidal current drive system
of permanent magnet synchronous motor with low resolution position sensor. In
Industry Applications Conference, 1996. Thirty-First IAS Annual Meeting, IAS’96.,
Conference Record of the 1996 IEEE, volume 1, pages 9–14. IEEE, 1996.
[3] Fabio Giulii Capponi, Giulio De Donato, Luca Del Ferraro, Onorato Honorati,
Michael C. Harke, and Robert D. Lorenz. Ac brushless drive with low-resolution
hall-effect sensors for surface-mounted pm machines. Industry Applications, IEEE
Transactions on, 42(2):526–535, 2006.
[4] Alessandro Lidozzi, Luca Solero, Fabio Crescimbini, and Augusto Di Napoli. Svm
pmsm drive with low resolution hall-effect sensors. Power Electronics, IEEE Transactions
on, 22(1):282–290, 2007.
[5] Philip B. Beccue, Steven D. Pekarek, Bradley J. Deken, and Andreas C. Koenig.
Compensation for asymmetries and misalignment in a hall-effect position observer
used in pmsm torque-ripple control. IEEE Transactions on, Industry Applications,
43(2):560–570, 2007.
[6] Sam-Young Kim, Chinchul Choi, Kyeongjin Lee, and Wootaik Lee. An improved
rotor position estimation with vector-tracking observer in pmsm drives with lowresolution
hall-effect sensors. Industrial Electronics, IEEE Transactions on, 58(9):
4078–4086, 2011.
[7] Yee-Pien Yang and Yi-Yuan Ting. Improved angular displacement estimation based
on hall-effect sensors for driving a brushless permanent-magnet motor. Industrial
Electronics, IEEE Transactions on, 61(1):504–511, 2014.
[8] J.M. Liu and Z.Q. Zhu. Improved sensorless control of permanent-magnet synchronous
machine based on third-harmonic back emf. Industry Applications, IEEE
Transactions on, 50(3):1861–1870, 2014.
[9] Xinghao Zhang and Wei Zhang. An improved rotor position estimation in pmsm with
low-resolution hall-effect sensors. In Electrical Machines and Systems (ICEMS), 2014
17th International Conference on, pages 2722–2727. IEEE, 2014.
[10] Jiancheng Fang, Wenzhuo Li, and Haitao Li. Self-compensation of the commutation
angle based on dc-link current for high-speed brushless dc motors with low inductance.
Power Electronics, IEEE Transactions on, 29(1):428–439, 2014.
[11] Savvas Tsotoulidis and A. Safacas. Side-effects of hall sensors misplacement on bldc
motor drive operation. In Electrical Machines (ICEM), 2014 International Conference
on, pages 1825–1830. IEEE, 2014.
[12] Arvin Tashakori and M. Ektesabi. A simple fault tolerant control system for hall effect
sensors failure of bldc motor. In Industrial Electronics and Applications (ICIEA),
2013 8th IEEE Conference on, pages 1011–1016. IEEE, 2013.
[13] Giacomo Scelba, Giulio De Donato, Giuseppe Scarcella, F. Giulii Capponi, and Filippo
Bonaccorso. Fault-tolerant rotor position and velocity estimation using binary
hall-effect sensors for low-cost vector control drives. Industry Applications, IEEE
Transactions on, 50(5):3403–3413, 2014.
[14] Hrishikesh Mehta, Ujjwala Thakar, Vrunda Joshi, Kirti Rathod, and Pradeep Kurulkar.
Hall sensor fault detection and fault tolerant control of pmsm drive system.
In Industrial Instrumentation and Control (ICIC), 2015 International Conference
on, pages 624–629. IEEE, 2015.
[15] Giacomo Scelba, Giulio De Donato, Mario Pulvirenti, F. Giulii Capponi, and
Giuseppe Scarcella. Hall-effect sensor fault detection, identification an compensation
in brushless dc drives. In Energy Conversion Congress and Exposition (ECCE),
2015 IEEE, pages 3987–3995. IEEE, 2015.
[16] Lianghui Dong, Juri Jatskevich, Yingwei Huang, Mehrdad Chapariha, and Jinglin
Liu. Fault diagnosis and signal reconstruction of hall sensors in brushless permanent
magnet motor drives.
[17] Robert D. Lorenz and Keith Van Patten. High resolution velocity estimation forall digital, ac servo drives. In Industry Applications Society Annual Meeting, 1988.,
Conference Record of the 1988 IEEE, pages 363–368. IEEE, 1988.
[18] Robert D. Lorenz and Keith W. Van Patten. High-resolution velocity estimation
for all-digital, ac servo drives. Industry Applications, IEEE Transactions on, 27(4):
701–705, 1991.
[19] Michael C. Harke, Giulio De Donato, Fabio Giulii Capponi, Tod R. Tesch, and
Robert D. Lorenz. Implementation issues and performance evaluation of sinusoidal,
surface-mounted pm machine drives with hall-effect position sensors and a vectortracking
observer. Industry Applications, IEEE Transactions on, 44(1):161–173, 2008.
[20] Anno Yoo, Seung-Ki Sul, Dong-Cheol Lee, and Cha-Seung Jun. Novel speed and
rotor position estimation strategy using a dual observer for low-resolution position
sensors. Power Electronics, IEEE Transactions on, 24(12):2897–2906, 2009.
[21] Shih-Chin Yang and Robert D. Lorenz. Surface permanent-magnet machine selfsensing
at zero and low speeds using improved observer for position, velocity, and
disturbance torque estimation. Industry Applications, IEEE Transactions on, 48(1):
151–160, 2012.
[22] Ming-Shi Huang, Chin-Hao Chen, Hsin-Hung Chou, Guen-Zheng Chen, Wen-Ko
Tsai, and H. Chan. An accurate torque control of permanent magnet brushless
motor using low-resolution hall-effect sensors for light electric vehicle applications.
In Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, pages 175–179.
IEEE, 2013.
[23] Zakariya M. Dalala, Younghoon Cho, and Jih-Sheng Lai. Enhanced vector tracking
observer for rotor position estimation for pmsm drives with low resolution hall-effect
position sensors. In Electric Machines & Drives Conference (IEMDC), 2013 IEEE
International, pages 484–491. IEEE, 2013.
[24] Caleb W. Secrest, Jon S. Pointer, Michael R. Buehner, and Robert D. Lorenz. Improving
position sensor accuracy through spatial harmonic decoupling, and sensor
scaling, offset, and orthogonality correction using self-commissioning mras methods.
Industry Applications, IEEE Transactions on, 51(6):4492–4504, 2015.
[25] Fabio Genduso, Rosario Miceli, Cosimo Rando, and G. Ricco Galluzzo. Back emf
sensorless-control algorithm for high-dynamic performance pmsm. Industrial Electronics,
IEEE Transactions on, 57(6):2092–2100, 2010.
[26] Hyunbae Kim, Michael C. Harke, and Robert D. Lorenz. Sensorless control of interior
permanent-magnet machine drives with zero-phase lag position estimation. Industry
Applications, IEEE Transactions on, 39(6):1726–1733, 2003.
[27] Zihui Wang, Kaiyuan Lu, and Frede Blaabjerg. A simple startup strategy based on
current regulation for back-emf-based sensorless control of pmsm. Power Electronics,
IEEE Transactions on, 27(8):3817–3825, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔