(35.175.212.130) 您好!臺灣時間:2021/05/17 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李豐熙
研究生(外文):Fong-Si Li
論文名稱:沉積於氧化鋁球之類鑽碳膜
論文名稱(外文):Diamond-like Carbon Films Deposited on Alumina Balls
指導教授:蘇春熺
指導教授(外文):Chun-Hsi Su
口試委員:廖駿偉蘇昭瑾
口試委員(外文):J.-W. LiawChang, C. Su
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:類鑽碳、氧化鋁基材、化學氣相沉積法、磨潤學、磨損率
外文關鍵詞:Diamond like carbonAlumina substrateMPJCVDTribological applicationsWear rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:56
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以微波電漿束化學氣相沉積(Microwave plasma jet chemical vapor deposition,MPJCVD)系統沉積類鑽碳(DLC)薄膜在氧化鋁板和氧化鋁球。使用掃描電子顯微鏡(SEM)、X光繞射儀(XRD)和拉曼光譜研究DLC沉積在Al2O3上的微觀結構和品質。由接觸角測量器來測量薄膜的接觸角。由MPJCVD生長DLC總氣體壓力70 torr和甲烷濃度0.25 %的影響進行了研究。結果表明不同電漿分佈在氧化鋁球基材鑽石薄膜晶粒形貌分別是頂部{001}面、長方形片狀結構、{111}面立方八面體鑽石。球5薄膜也表現出較高的接觸角大於球8薄膜和球2薄膜,用蒸餾水測試出球5(93.7°)比球8薄膜(93.4°)和球2薄膜(92.7°)有更高的接觸角。磨耗實驗結果表明,在氧化鋁球的鑽石薄膜晶粒形貌頂部有{001}面顯示較好的抗磨損性能,{111}面立方八面體方向性的鑽石是最差的抗磨損性能。磨耗實驗時顯示未鍍鑽石薄膜在氧化鋁球和在氧化鋯球上的溫度比鍍鑽石薄膜在氧化鋁球上的高,代表鑽石薄膜的熱傳導率高。
Diamond like carbon (DLC)films were deposited on alumina (Al2O3) plate substrate and alumina ball by the microwave plasma jet chemical vapor deposition (MPJCVD) system. Microstructures and quality of the deposited DLC/Al2O3 were studied using the scanning electron microscopy(SEM), the X-ray diffraction(XRD), and the Raman spectroscopy. Contact angle of films were measured by contact angle measurement. The effect of total gas pressure, 70 torr, and methane concentration, 0.25 %, on DLC growth by MPJCVD was examined. The results indicate that with different Plasma distribution for Diamond film grain morphology have top {001} facet、rectangular flaky configuration、{111} facet oriented diamond octahedral on the alumina ball substrates. The ball 5 films also show higher contact angle than ball 8 and ball 2 films, the tested by distilledwater show higher contact angle (93.7°) than ball 8 (93.4°) and ball 2 films (92.7°). The results indicate of abrasion test that with Diamond film grain morphology have top {001} facet revealing a better anti-wear property、{111} facet diamond octahedral was the worst on the alumina ball. Experiments show non-coating diamond alumina balls and zirconium balls high temperatures than coating diamond alumina balls, representative thermal conductivity high of diamond thin film.
摘 要.....................................i
ABSTRACT...................................ii
誌 謝......................................iii
目 錄......................................iv
表目錄.....................................vi
圖目錄.....................................vii
第一章 序論................................1
1.1 前言 ...................................1
1.2 研究動機................................1
第二章 文獻回顧............................3
2.1 碳的種類與結構..........................3
2.1.1 鑽石結構..............................3
2.1.2 石墨結構..............................4
2.1.3 類鑽碳結構............................5
2.2 鑽石材料基本性質.........................5
2.3 鑽石磨料................................7
2.4 類鑽碳薄膜成長機制.......................7
2.5 電漿理論................................13
2.6 化學氣相沉積鑽石薄膜磨潤學之文獻探討......14
2.7 接觸角性質..............................17
2.8 磨耗機制[28]............................18
2.8.1 磨耗現象之分析........................18
2.8.2 影響磨耗性之因素......................19
2.9 氧化鋁陶瓷特性[29]......................20
2.9.1 高溫材料.............................20
2.9.2 機械材料.............................20
2.9.3 電子材料.............................20
2.9.4 形狀材料.............................21
2.9.5 接著材料.............................21
2.10 氧化鋯陶瓷特性........................21
第三章 實驗方法與步驟......................22
3.1 實驗流程...............................22
3.2 微波電漿束化學氣相沉積系統...............23
3.3 實驗材料...............................25
3.4 實驗步驟與參數..........................25
3.4.1 基材前處理...........................25
3.4.2 成長類鑽碳薄膜.......................26
3.5 薄膜特性分析儀器介紹....................26
3.5.1 場發射掃描式電子顯微鏡(FESEM).........26
3.5.2 拉曼光譜儀...........................27
3.5.3 X光繞射儀(XRD).......................28
3.5.4 OES電漿光譜監測系統...................29
3.5.5 紅外線熱顯像儀........................31
3.6 磨耗實驗...............................32
3.6.1 磨耗原理.............................32
3.6.2 平均磨耗率的計算......................33
第四章 結果與討論...........................34
4.1 實驗說明...............................34
4.2 氧化鋁板基材位置的電漿分佈...............34
4.3 比較氧化鋁球和氧化鋁板之間的鑽石薄膜......37
4.3.1 比較沉積前和沉積時氧化鋁球和氧化鋁板基材的差異 .37
4.3.2 比較沉積後氧化鋁球和氧化鋁板分布的差異..39
4.3.3 場發射掃描式電子顯微鏡影像.............45
4.3.4 拉曼光譜分析..........................47
4.3.5 X光繞射儀分析.........................48
4.3.6 接觸角...............................49
4.3.7 OES電漿光譜監測系統...................52
4.4 磨耗實驗...............................53
4.4.1場發射掃描式電子顯微鏡影像..............53
4.4.2拉曼光譜分析 ...........................56
4.4.3 X光繞射儀分析.........................56
4.4.4磨損率和磨痕深度.......................58
4.4.5鑽石的熱傳導性.........................59
第五章 結論...............................64
參考文獻...................................65
附錄一.....................................70
附錄二.....................................78
1.K.J. Sankaran, N. Kumar, S. Dash, H.C. Chen, A.K. Tyagi, N.H. Tai, I.N. Lin, “Significance of grain and grain boundary characteristics of ultrananocrystalline diamond films and tribological properties”, Surface & Coatings Technology, 232, (2013), 75–87
2.C.S. Abreu , M. Amaral , A.J.S. Fernandes , F.J. Oliveira , R.F. Silva , J.R. Gomes, “Friction and wear performance of HFCVD nanocrystalline diamond coated
silicon nitride ceramics”, Diamond & Related Materials, 15 (2006) 739 – 744.
3.鈴木秀人、池永勝原著 ; 陳克紹編譯,「DLC成膜技術」,全華圖書,2005,第2-3到2-9頁。
4.許庭瑋,微波輔助化學氣相沉積合成奈米碳管與特性分析,碩士論文,國立國立臺北科技大學光電技術研究所,台北,民國九十一年七月
5.宋建民,鑽石合成,台北市,全華圖書, 2000,第4-2到4-4頁
6.宋建民,超硬材料,台北市,全華圖書, 2000,第2-7到7-51頁
7.顏士豪,電漿幾何形狀及基材與電漿中心相對位置於成長鑽石薄膜影響之研究,碩士論文,國立國立臺北科技大學機電整合研究所,台北,民國93年。
8.J.J. Lander, J. Momsom,: J. Chem. Phys., vol 34, 1963, pp 1403
9.M.Tsuda, M.Nakajima, S. Oikawa, “The importance of the positively changed surface for epitaxial growth of diamond at low pressure”, Jpn. J. Appi. Phys., vol 26, no 5, 1987, pp527.
10.M.Tsuda, M.Nakajima, S. Oikawa, “Epitaxial growth mechanism of diamond crystal in CH4-H2 plasma”, J. Am. Ceram. Soc., vol 108, 1986, pp5780
11.Paul W. May, Diamond thin films: a 21st-century material, phil. Trans. R. Soc. Lond. A, 2000, pp478-498
12.宋健民,「工業鑽石未來大趨勢」,工業材料,第134期,民國87年2月,第143-153頁。
13.Mark A. Prelas et al., Handbook of Industrial Diamond and Diamond Films, New York: Marcel Dekker, Inc. 1998, pp10-41, pp929-927
14.B.V. Spitsyn, L.L. Ouilov, and B.V. Derjaguin, “Vapor growth of diamond on diamond and other surface”, J. Cryst. Growth, vol 52 , 1981, 219
15.K.E.Spear, “Growth of crystal diamond from low pressure gases”, Earth and Mineral Sciences, 56, 1987, pp53
16.K.E.Spear, M. Frenklach, A. Badzian, T. Badzian, R. Messier, “Vapor deposition of crystal diamond”, Ceram. Eng. Sci. Proc., vol 9, 1988, pp1095
17.林博庸,「大氣電將在玻璃表面清潔之應用」,機械工業,第307期,2008,第83-85頁。
18.吳佩珊、董福慶,「大面積電漿源鍍膜技術介紹」,機械工業,第314期,2009,第65-67頁。
19.劉至宏、陳至瑋,「簡介大氣電漿技術與產業應用」,機械工業,第282期,2006,第87-90頁。
20.張靖郁,利用電漿放射光譜診斷MPJCVD系統成長奈米晶鑽石膜及其光電導特性研究,博士論文,國立台北科技大學機電科技研究所,台北,1998。
21.S.M. Pimenov, A.A. Smolin, E.D. Obraztsova, V.I. Konov, U. Bhgli, A. Blatter,
M. Maillat, A. Leijala, j. Burger, H.E. Hintermann, E.N. Loubnin, “Tribological behaviour of smooth diamond films”, Surface and Coatings Technology , vol 76-77, (1995), pp572-578
22.Sung-Pill Hong, Hiromichi Yoshikawa, Koichiro Wazumi, Yoshinori Koga, “Synthesis and tribological characteristics of nanocrystalline diamond film using CH4/H2 microwave plasmas”, Diamond and Related Materials, vol 11, (2002), pp877–881
23.D. Sheeja, B.K. Tay, S.M. Krishnan, L.N. Nung, “Tribological characterization of diamond-like carbon (DLC) coatings sliding against DLC coatings”, Diamond and Related Materials, vol 12, (2003), pp1389–1395
24.C. Casiraghi, A.C. Ferrari, J. Robertson, Phys. Rev. B 72 (2005) 385.
25.R.P.C. Costa, D.A. Lima-Oliveira, F.R. Marciano, A.O.Lobo, E.J. Corat, V.J. Trava-Airoldi, “Comparative study of the tribological behavior under hybrid lubrication of diamond-like carbon films with different adhesion interfaces”, Applied Surface Science, vol 285P, (2013), pp 645– 648
26.Naichao Chen, Leiwu Pu, Fanghong Sun, Ping He, Qunzhi Zhu, Jianxing Ren, “Tribological behavior of HFCVD multilayer diamond film on silicon carbide”, Surface & Coatings Technology, vol 272, (2015), pp66–71
27.徐士昌,「蓮花的自潔功能與奈米科技的應用」,科學發展,第 354 期,2002,
第60-63 頁。
28.方治國、江可達、林本源、林啟瑞、林進誠、謝忠祐等編著,機械材料實驗,新北市,新科技書局, 2003,第229到232頁
29.張麗君、李志偉、陳永逸編著,超硬工程材料,台北市,高立圖書, 2010,第250到256頁
30.肖定全,陶瓷材料,新北市,新文京開發出板有限公司,,2013,第66到68頁
31.王帥,以微波電漿束化學氣相沉積系統於石英基材成長之類鑽碳薄膜的電磁性能
,碩士論文,國立台北科技大學製造科技研究所,台北,2011。
32.Linjun Wang, Jinfang Lu, Qingfeng Su, Nanchun Wu, Jianmin Liu, Weimin Shi, Yiben Xia, “[100]-textured growth of polycrystalline diamond films on alumina substrates by microwave plasma chemical vapor deposition”, Materials Letters, vol 60, (2006) ,2390–2394
33.http://ctfta.mcut.edu.tw/files/11-1019-3984.php
34.A.J.S. Fernandes, M.A. Neto, F.A. Almeida, R.F. Silva, F.M. Costa, “Nano- and micro-crystalline diamond growth by MPCVD in extremely poorhydrogen uniform plasmas”, Diamond & Related Materials, 16 (2007), 757–761.
35.C.M. Li, R.H. Zhu, J.L. Liu, L.X. Chen, J.C. Guo, C.Y. Hua, L.F. Hei, J.J.Wei, J.J.Wang, Z.H. Feng, H. Guo, F.X. Lu, “Effect of arc characteristics on the properties of large size diamond wafer prepared by DC arc plasma jet CVD”, Diamond & Related Materials, 39, (2013), 47–52
36.Y. Mo, Y. Xia, W. Wu, “A nucleation mechanism for diamond film deposited on alumina substrates by microwave plasma CVD”, Journal of Crystal Growth, 191, (1998) , 459—465
37.J.G. Buijnsters, L. Vázquez, J.J. terMeulen, “Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth”, Diamond & Related Materials, 18 (2009) 1239–1246
38.Kishore Uppireddi, Brad R. Weiner, Gerardo Morell, “Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition”, Diamond & Related Materials, 17, (2008), 55–59
39.http://www.acnt.com.tw/index.php/2013-06-21-02-39-42/2013-06-21-02-40-42/2013-07-18-09-10-12
40.S.D. Wolter, R. Schlesser, F. Okuzumi, J.T. Prater, Z. Sitar, “Angle -dependent reflectometry as a technique for fast assessment of highly oriented diamond film quality”, Diamond and Related Materials , 10, (2001), 2092-2095
41.Vladimir Jesus Trava-Airoldi, Evaldo JosC Corat, Angel Fidel Vilche Peiia, NClia Ferreira Leite, Vitor Baranauskas, Maria Cecilia Salvadori, “Columnar CVD diamond growth structure on irregular surface substrates”, Diamond and Related Materials, 4 (1995), 1255-1259
42.F. Silva, X. Bonnin, J. Achard, O. Brinza, A. Michau, A. Gicquel, “Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system”, Journal of Crystal Growth, 310, (2008), 187–203
43.G. Wu, M.-H. Chen, J. Liao, “ The influence of recess depth and crystallographic orientation of seed sides on homoepitaxial growth of CVD single crystal diamonds”, Diamond & Related Materials, 65, (2016), 144–151
44.C.J. Tang, J. Gracio, A.J.S. Fernandes, H. Calisto, A.J. Neves, M.C. Carmo, “Simultaneous fabrication of nanocrystalline and {100} textured large-grained diamond films”, Vacuum, 83, (2009), 340–345
45.C.J. Tang , A.J.S. Fernandes , Marco Granada , J.P. Leitao, S. Pereira , X.F. Jiang ,J.L. Pinto, H. Ye, “High rate growth of nanocrystalline diamond films using high microwave power and pure nitrogen/methane/hydrogen plasma”, Vacuum, xxx (2015) 1-5
46.C. Johnston , A. Crossley, P. R.Chalker and I.M.Buckley-Golder ,K. Kobashi, “High temperature Raman studies of diamond thin films”, Diamond and Related Materials, 1 (1992) 450-456
47.Pfeiffer, H. Kuzmany, P. Knoll, S. Bokova, N. Salk, B. Gunther, “Evidence for trans-polyacetylene in nano-crystalline diamond films”, Diamond and Related Materials, 12, (2003), 268–271.
48.Xinchun Chen, Zhijian Peng, Xiang Yu, Zhiqiang Fu, Wen Yue, Chengbiao Wang, “Microstructure and tribological performance of self-lubricating diamond/tetrahedral amorphous carbon composite film”, Applied Surface Science, 257 (2011)3180–3186
49.Nutthanun Moolsradoo , Shuichi Watanabe, “Modification of tribological performance of DLC films by means of some elements addition”, Diamond & Related Materials, 19, (2010), 525–529
50.Xiaoqiang Pei, Shaoheng Cheng, Yibo Ma, Danfeng Wu, Junsong Liu, Qiliang Wang, Yizhou Yang, Hongdong Li, “Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films”, Applied Surface Science, 346, (2015), 189–193
51.G.C. Chen, B. Li, H. Li, H. Lan, F.W. Dai, Q.J. Xue, X.Q. Han, L.F. Hei, J.H. Song, C.M. Li,W.Z. Tang, F.X. Lu, “Growth of diamond by DC Arcjet Plasma CVD: From nano-sized poly-crystal films to millimeter-sized single crystal grain”, Diamond & Related Materials, 19, (2010), 1078–1084
52.Yihui Zhao, Wen Yue, Fang Lin, Cheng biao Wang, Zong yi Wu, “Friction and wear behaviors of polycrystalline diamond under vacuum conditions” Int. Journal of Refractory Metals and Hard Materials, 50, (2015), 43–52
53.Qi Hua Fan, E. Pereira, P. Davim, J. Gracio, C.J. Tavares, “Friction and adhesion behavior of polycrystalline diamond films deposited on metals”, Surface and Coatings Technology, 126, (2000), 110-115
54.Dongcan Zhang, Bin Shen, Fanghong Sun, “Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates”, Applied Surface Science, 256, (2010), 2479–2489
55.U. Biigli, A. Blatter, S.M. Pirnenov, E.D. Obraztsova, A.A. Smolin, M. Maillat, A. Leijala, J. Burger, H.E. Hintermann, E.N. Loubnin, “Tribological properties of smooth polycrystalline diamond films”, Diamond and Related Materials, 4, (1995), 1009-1019.
56.Chau-Chang Chou, Jyh-Wei Lee, Yen-I Chen, “Tribological and mechanical properties of HFCVD diamond-coated WC-Co substrates with different Cr interlayers”, Surface & Coatings Technology, 203, (2008), 704–708
57.E. Liu, B. Blanpain, J.-P. Celis, “Fretting friction and wear of polycrystalline diamond coatings”, Diamond and Related Materials, 5, (1996), 649-653
58.André Schade, Stefan M. Rosiwal, Robert F. Singer, “Tribological behaviour of b100N and b111N fibre textured CVD diamond films under dry planar sliding contact”, Diamond & Related Materials, 15, (2006), 1682–1688
59.J. Flaquer, A. Rios, A. Martin-Meizoso, S. Nogales, H. Bohm, “Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites”, Computational Materials Science, 41, (2007), 156–163
60.H. Feng, J.K. Yu, W. Tan, “Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles”, Materials Chemistry and Physics,124, (2010), 851–855
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top