(3.210.184.142) 您好!臺灣時間:2021/05/13 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳世其
研究生(外文):Chen Shih-Chi
論文名稱:有機朗肯循環於不同工作流體之最適化應用研究
論文名稱(外文):Experimental comparison and optimizing of organic Rankine cycle using different working fluid
指導教授:洪祖全
指導教授(外文):Hung Tzu-Chen
口試委員:黃建華林志宏白寶實
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:實際應用混合流體有機朗肯循環廢熱回收
外文關鍵詞:ORC applicationmixture refrigerantorganic Rankine cycleWaste heat recovery
相關次數:
  • 被引用被引用:1
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:1
本研究之目的主要探討四種R245fa與R123不同混合比例之工作流體,對於ORC(organic Rankine cycle)發電系統之性能與最大淨發電量之比較,並將實驗機組與實際工業廢熱源連接試運轉。將先前本實驗團隊設計之機組進行修改後,依R245fa與R123之質量比值(R245fa:R123) 1:0、2:1、1:2、0:1填入系統運轉。本研究模擬外界熱量無限大之實際廢熱源,固定熱源進入ORC機組之溫度110˚C與120˚C與熱源流量,針對不同工作流體質量流率與膨脹器入口過熱度進行比較,發現隨著工作流體質量流率上升,系統輸入熱亦逐漸上升,當工作流體質量流率為0.15 kg/s,四種混合比例皆有最大之淨發電量,其中R245fa在熱源入口溫度為110˚C時,最大淨發電量為1.56 kW、熱電轉換效率約為3.9 %;當熱源入口溫度為120˚C時,混合比例R245fa:R123=2:1有最大淨發電量1.66 kW、熱電效率約為4.4 %。由改變不同膨脹器入口過熱度實驗發現,隨著膨脹器入口過熱度增加,系統輸入熱、壓力差與淨發電量並無顯著之變化;最大淨發電量為使用R245fa時的1.62 kW,膨脹器入口過熱度約為13˚C。而潤滑油填充量比例之實驗發現,若潤滑油與工作流體之質量比超過3.33 %,當系統運轉膨脹器入口過熱度低於7˚C時,計算熱力性質時會有大於10%之偏差,但潤滑油與工作流體之質量比低於3.33 %時,則會造成膨脹器在運轉時產生尖銳之噪音,因此建議潤滑油填充量約為工作流體質量比之3.33 %。
基於目前本實驗團隊之實驗結果與經驗,將機組與化學工廠處理有機揮發性氣體(Volatile Organic Compound, VOC)之直燃式焚化爐廢熱連接,並將操作條件撰寫由可程式控制系統(Programmable Logic Control, PLC)進行機組控制。由測試結果發現,控制系統如預期使機組正常運轉並發電,雖然仍有待調整之部分,但系統控制邏輯與架構已能滿足ORC機組發電使用。
The main purpose of this paper is experimentally comparing of organic Rankine cycle (ORC) system, by using four different mass fraction of mixture of R245fa and R123 working fluid to generate maximum net electrical power. Also an ORC machine is installed and tested at a chemical factory site for real testing, which using Thermal Oxidizer (TO) to cremate Volatile Organic Compound (VOC), and produce industrial waste heat for testing. After former system is modified, four mass fraction (R245fa:R123) 1:0, 2:1, 1:2, 0:1 is injected into the system separately. To imitate the real waste heat testing, heat source temperature is fixed at 110˚C and 120˚C and the flow rate of heat source is also fixed. Focus on changing mass flow rate of working fluid and changing expander inlet superheating degree, experiment results show that when mass flow rate of working fluid increasing, by energy conservation system heat input is also increasing. All four mass fraction of working fluid mixture will generate maximum net electrical power when the system mass flow rate is 0.15 kg/s. While pure R245fa generate 1.56 kW when heat source temperature input is 110˚C and its electrical efficiency is about 3.9%; the mixture 2:1 output net electrical power and electrical efficiency of 1.66 kW and 4.4% respectively. As expander inlet superheating degree rising the system heat input, system pressure difference and net electrical power are not changing obviously. The maximum net electrical power output of 1.62 kW ia occurred when using pure R245fa with, expander inlet superheating degree of about 13˚C. When lubricant mass fraction is over 3.33%, and expander inlet superheating degree is below 7˚C, the calculated thermal dynamic properties will have over 10 % deviation. But when lubricant mass fraction is below 3.33 %, expander will generate sharp noise which may show bad lubrication.
Based on our team’s test results and experience an ORC system is installed at a selected chemical factory, which is using TO cremating VOC, producing industrial waste heat. By utilizing experimental data and operation experience, the PLC is programed and controlling the ORC system properly. Although there are still some minor improvement needed, test results shown that the control process is applicable to the real ORC system operation.
內容
摘 要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 工作流體 3
1.2.2廢熱種類 5
1.2.3碳排放與碳稅 5
1.3 本文架構 6
第二章 理論模式 8
2.1 熱力學方程式 8
2.2 理論計算 10
2.2.1 工作流體選用 10
2.2.2 理論模型 11
2.2.3 模型之計算結果 12
第三章 實驗系統架設與修改 15
3.1 實驗系統架構 15
3.1.1 膨脹器 16
3.1.2 系統熱源與蒸發器 17
3.1.3 冷凝系統 19
3.1.4 工作流體幫浦 20
3.1.5 潤滑系統 21
3.1.6 發電系統 22
3.2實驗系統修改 23
3.2.1 膨脹器入口管 23
3.2.2 膨脹器出口量測點 24
3.2.3 油封材質更換 26
3.2.4 膨脹器油迴路 27
3.2.5 加裝Y型過濾器 28
第四章 結果與討論 29
4.1 機組試運轉 30
4.2 改變工作流體質量流率實驗 33
4.3改變膨脹器入口過熱度實驗 40
4.4 潤滑油比例實驗 45
4.5理論計算與實驗結果比較 51
第五章 實際應用 54
5.1熱源簡介 54
5.2 程式控制 56
5.2.1 限制條件 57
5.2.2 程式介面 59
5.3 測試結果 60
第六章 結論 61
第七章 未來工作與建議 63
參考文獻 64
附錄 69
1.G.D. Jacobsen, “The Al Gore effect: An Inconvenient Truth and voluntary carbon offsets,” Journal of Environmental Economics and Management, 2011, Vol. 61, pp. 67-78.
2.聯合國氣候變化框架公約, UNFCCC, 2015
3.溫室氣體減量及管理法,行政院環境保護署, 2015
4.中華民國國家溫室氣體清冊報告,行政院環境保護署, 2015
5.A. Kossoy, G. Peszko, K. Oppermann, N. Prytz, A. Gilbert, N. Klein, L. Lam, L. Wong, “Carbon pricing watch 2015 : an advance brief from the state and trends of carbon pricing 2015 report, to be released late 2015, ” World Bank, 2015, report number 96602
6.T. Yamamoto, T. Furuhata, N. Arai, K. Mori, “Design and testing of the organic Rankine cycle,” Energy, Vol. 26, 2001, pp. 239-251.
7.T.C. Hung, T.Y. Shai, S.K. Wang, “A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat,” Energy, Vol. 22, 1997, pp. 661-667.
8.V. Maizza, A. Maizza, “Unconventional working fluids in organic Rankine- cycles for waste energy recovery systems,” Applied Thermal Engineering, Vol. 21, 2001, pp. 381-390.
9.B.T. Liu, K.H. Chien, C.C. Wang, “Effect of working fluids on Organic Rankine Cycle for waste heat recovery,” Energy, Vol. 29, 2004, pp. 1207-1217.
10.H.D. Hettiarachchi, M. Golubovic, W.M. Worek, Y. Ikegami, “Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources,” Energy, Vol. 32, 2007, pp. 1698-1706.
11.B. Saleh, G. Koglbauer, M. Wendland, J. Fischer, “Working fluids for low- temperature Organic Rankine Cycles,” Energy, Vol. 32, 2007, pp. 1210-1221.
12.A. Borsukiewicz-Gozdur, W. Nowak, “Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius–Rankine cycle,” Energy, Vol. 32, 2007, pp. 344-352.
13.J. Facao, A. Palmero-Marrero, A.C Oliveira, “Analysis of a solar assisted micro- cogeneration ORC system,” International Journal of Low-Carbon Technologies, Vol. 3, 2008, pp. 254.
14.Y. Dai, J. Wang, L.Gao, “Parametric optimization and comparative study of Organic Rankine Cycle (ORC) for low grade waste heat recovery,” Energy Conversion and Management, Vol. 50, 2009, pp. 576-582.
15.N.B. Desai, S. Bandyopadhyay, “Process integration of Organic Rankine Cycle,” Energy, Vol. 34, 2009, pp. 1674-1686.
16.I.H. Aljundi, “Effect of dry hydrocarbons and critical point temperature on the efficiencies of Organic Rankine Cycle,” Renewable Energy, Vol. 36, 2011, pp. 1196-1202.
17.E.H. Wang, H.G. Zhang, B.Y. Fan, M.G Ouyang, Y. Zhao, Q.H. Mu, “Study of working fluid selection of Organic Rankine Cycle (ORC) for engine waste heat recovery,” Energy, Vol. 36, 2011, pp. 3406-3418.
18.J.P. Roy, M.K. Mishra, A. Misra, “Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions,” Applied Energy, Vol. 88, 2011, pp. 2995-3004.
19.S. Quoilin, M. Orosz, H. Hemond, V. Lemort, “Performance and design optimization of a low-cost solar Organic Rankine Cycle for remote power generation,” Solar Energy, Vol. 85, 2011, pp. 955-966.
20.T.C. Hung, S.K. Wang, C.H. Kuo, B.S. Pei, K.F. Tsai, “A study of organic working fluids on system efficiency of an ORC using low-grade energy sources,” Energy, Vol. 35, 2010, pp. 1403-1411.
21.P.J. Mago, L.M. Chamra, K. Srinivasan, C. Somayaji, “An examination of regenerative organic Rankine cycles using dry fluids,” Applied Thermal Engineering, Vol. 28, 2008, pp. 998-1007.
22.H. Fang, J.J. Xia, K. Zhu, Y.B. Su, Y. Jiang, “Industrial waste heat utilization for low temperature district heating,” Energy Policy, Vol. 62, 2011, pp.236-246
23.H.Y. Lu, L. Price, Q. Zhang, “Capturing the invisible resource: Analysis of waste heat potential in Chinese industry,” Applied Energy, Vol. 161, 2016, pp. 497-511.
24.L. Miro, S. Bruckner, L.F. Cabezza, “Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries,” Renewable and Sustainable Energy Reviews, Vol. 51, 2012, pp. 847-855.
25.陳昱霖,工廠廢熱回收設備最佳化規劃,碩士論文,國立雲林科技大學工業工程與管理研究所,雲林, 2013。
26.能源局採取「創新管理」方式推動能源回收再利用http://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40
27.11月份專題-檢視歐盟生質燃料政策與碳排放交易制度, 經濟部https://www.go-moea.tw/downloadmsg3.asp?id=17
28.國際碳排放交易市場碳價格及交易量趨勢分析(2015年9月至12月) http://ghgregistry.epa.gov.tw/epaper/37/PDF/8.%E5%9C%8B%E9%9A%9B%E7%A2%B3%E6%8E%92%E6%94%BE%E4%BA%A4%E6%98%93%E5%B8%82%E5%A0%B4%E7%A2%B3%E5%83%B9%E6%A0%BC%E5%8F%8A%E4%BA%A4%E6%98%93%E9%87%8F%E8%B6%A8%E5%8B%A2%E5%88%86%E6%9E%90.pdf
29.T. Alton, C. Arndt, R. Davies, F. Hartley, K. Makrelov, J. Thurlow, D. Ubogu, “Introducing carbon taxes in South Africa,” Applied Energy, Vol. 116, 2014, pp. 344-354.
30.張仁傑,微型有機朗肯循環發電系統建立,博士論文,國立國立臺北科技大學機電科技研究所,臺北,2015。
31.S. Quoilin, S. Declaye, B. F. Tchanche, V. Lemort, “Thermo-economic optimization of waste heat recovery Organic Rankine Cycles,” Applied Thermal Engineering, Vol. 31, 2011, pp. 2885-2893.
32.T.C. Hung, “Waste heat recovery of organic Rankine cycle using dry fluids,” Energy Conversion and Management, Vol. 42, 2001, pp. 539-553.
33.K.A. Barse, M.D. Mann, “Maximizing ORC performance with optimal match of working fluid with system design,” Applied Thermal Engineering, Vol. 100, 2016, pp. 11-19.
34.H.C. Jung, L. Taylor, S. Krumdieck, “An experimental and modelling study of a 1 kW organic Rankine cycle unit with mixture working fluid,” Energy, Vol. 81, 2015, pp. 601-614.
35.G.Q. Shu, Y.Y. Gao, H. Tian, H.Q. Wei, X.Y. Liang, “Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery,” Energy, Vol. 74, 2014, pp. 428-438.
36.X.D. Wang, L. Zhao, “Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation,” Solar Energy, Vol. 83, 2009, pp. 605-613.
37.S. Quoilin, R. Aumann, A. Gril , A. Schuster, V. Lemort, H. Spliethoff, “Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles,” Applied Energy, Vol. 88, 2011, pp. 2183-2190.
38.M. Youbi-Idrissia, J. Bonjoura, M.F. Terriera, C. Marvillet, F. Meunier, “Oil presence in an evaporator: experimental validation of a refrigerant/oil mixture enthalpy calculation model,” International Journal of Refrigeration, Vol. 27, 2004, pp. 215-224.
39.BVA RPOE 120 Density -Thermal Binder, BVA Inc.
40.梁博傑,「以觸媒氧化方式處理VOC有機揮發性氣體理論及實例簡介」,1999工業污染防治工程實務技術研討會論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔