(3.236.222.124) 您好!臺灣時間:2021/05/10 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張正中
研究生(外文):Cheng-Chung Chang
論文名稱:以有限元素分析法探討正交異向性工字樑結構型材的三點彎曲變形之研究
論文名稱(外文):Analysis of three point bending test for orthotropic I-beam structural materials with finite element method
指導教授:張合
指導教授(外文):Ho Chang
口試委員:高木榮李文德李仁方
口試委員(外文):Mu-Jung KaoWen-Te LeeJen-Fang Lee
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:抗拉強度剪力破壞抗剪強度剪應力高度方向性高分子聚合物有限元素分析
外文關鍵詞:Tensile strengthShear failureShear strengthShear stressHighly oriented polymerFinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在許多結構材料的實際應用上有可能會受到彎曲變形,尤其需要注意結構材料受三點彎曲變形的受力情況,這是因為結構材料在受到三點彎曲變形時,整段型材都會受到剪力分佈,而具有正交異向性材料特性(Orthotropic material)的高度方向性高分子聚合物(Highly oriented polymer),在沿著長度方向的抗拉強度(Tensile strength)較高,但是抗剪強度(Shear strength)相當低,容易造成過早的剪力破壞(Shear Failure)。由於高度方向性高分子聚合物(Highly oriented polymer)可能包含各種熱塑性塑膠材料,例如:聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚甲醛(POM)、聚醚醚酮(PEEK)等材料,而每一種高度方向性高分子聚合物的機械物理性質都不相同。本研究因而提供一種利用有限元素法來分析具有正交異向性的高度方向性高分子聚合物結構型材,在實際設計應用時所該注意的幾何形狀參數,特別是型材長度與型材高度的高長比(Aspect ratio)。我們選取結構應用常見的工字樑作為本研究的型材。從本研究結果得以發現,的確可以利用有限元素法(Finite element method)成功地根據正交異向性的高度方向性高分子聚合物結構型材的材料特性,找出最佳的型材長度與型材高度的高長比區間,在這個安全的高長比區間可以避免過早的剪力破壞。
In real application, many structural materials are under bending, in which three point bending should be paid special attention, as in three point bending tests, the whole profile is subject to shear stress. The presence of shear stress is not harmful to isotropic structural materials. However, since orthotropic materials, such as highly oriented polymers, have very strong tensile strength, but relatively weak shear strength, premature share failure can occur before tensile failure, if attention is not properly paid to the design of geometrical profiles. It is therefore the intention of this study to study the effect of geometrical parameters that affect the mechanism of failure modes, particularly the aspect ratio of the length over the height of the structural profile, taking I-beam as a subject for this study. Since highly oriented polymers may be made of many thermoplastics, such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyoxymethylene (POM), and polyether ether ketone (PEEK), etc., each highly oriented polymer may have different physical properties. This study provides an analytical approach using finite element method to determine the best aspect ratio of length over height for the structural profile of highly oriented polymer. Throughout the course of this study, we have found that it is feasible to identify a proper aspect ratio region, wherein we can eliminate premature shear failure.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 固態加工成型 3
1.3 文獻回顧 8
1.4 研究動機與目的 18
1.5 論文架構 19
第二章 基礎理論 20
2.1 米西斯準則 20
2.2 正交異向性材料 21
2.3 有限元素法 25
2.4 有限元素分析軟體Abaqus介紹 28
2.4.1 前處理模組 29
2.4.2 求解器模組 32
2.4.3 後處理模組 32
第三章 研究方法 33
3.1 研究流程 33
3.2 建立實體模型 34
3.3 材料性質之設定 37
3.4 組裝實體模型 39
3.5 接觸面之設定 40
3.6 負載與邊界條件之設定 42
3.7 劃分網格 43
3.8 分析求解設定與輸出之分析結果 44
第四章 研究結果與討論 45
4.1 不同高長比之工字樑拉力破壞發生位置 45
4.2 不同高長比之工字樑剪力破壞發生位置 48
4.3 材料A之拉力與剪力破壞發生順序 58
4.4 材料B之拉力與剪力破壞發生順序 59
4.5 材料C之拉力與剪力破壞發生順序 60
4.6 材料D之拉力與剪力破壞發生順序 61
4.6 討論 62
第五章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 65
參考文獻 66
符號彙編 71
[1]Imperial Chemical Industries Ltd, Plastics Division, Landmarks of the Plastics Industry, 1862-1962, London: Imperial Chemical Industries (Plastics Division), 1962, pp. 13-25.
[2]H. Staudinger, “Über Polymerisation,” Berichte der deutschen chemischen Gesellschaft, vol. 53, no. 6, 1920, pp. 1073-1085.
[3]H. Staudinger, “Viscosity investigations for the examination of the constitution of natural products of high molecular weight and of rubber and cellulose,” Transactions of the Faraday Society, vol. 29, 1933, pp. 18-32.
[4]W. H. Carothers, “Polymers and polyfunctionality,” Transactions of the Faraday Society, vol. 32, 1936, pp. 39-49.
[5]P. J. Flory, Principles of Polymer Chemistry, Ithaca: Cornell University Press, 1953, pp. 75-82.
[6]P. Cossee, “On the reaction mechanism of the ethylene polymerization with heterogeneous ziegler-natta catalysts,” Tetrahedron Letters, vol. 1, no. 38, 1960, pp. 12-16.
[7]P. Cossee, “The formation of isotactic polypropylene under the influence of ziegler-natta catalysts,” Tetrahedron Letters, vol. 1, no. 38, 1960, pp. 17-21.
[8]I. M. Ward, P. D. Coates, M. M. Dumoulin, Solid Phase Processing of Polymers, Cincinnati: Hanser Gardner Publications, Inc., 2000, pp. 120-129.
[9]P. D. Coates, P. Caton-Rose, I. M. Ward, G. Thompson, “Process structuring of polymers by solid phase orientation processing,” Science China Chemistry, vol. 56, no. 8, 2013, pp. 1017-1028.
[10]P. Smith, P. J. Lemstra, “Ultra-high-strength polyethylene filaments by solution spinning/drawing,” Journal of Materials Science, vol. 15, no. 2, 1980, pp. 505-514.
[11]R. H. Rane, Microstructure development in solid state processing of polypropylene-talc composites and melt processing of high molecular weight HDPE-clay nanocomposites, Ph.D. Thesis, Michigan State University, Michigan, U. S., 2013, pp. 2-6.
[12]P. D. Coates, I. M. Ward, “Drawing of polymers through a conical die,” Polymer, vol. 20, no. 12, 1979, pp. 1553-1560.
[13]A. Richardson, P. S. Hope, I. M. Ward, “The production and properties of poly(vinylidene fluoride) rods oriented by drawing through a conical die,” Journal of Polymer Science: Polymer Physics Edition, vol. 21, no. 12, 1983, pp. 2525-2541.
[14]W. P. Leung, F. C. Chen, C. L. Choy, A. Richardson, I. M. Ward, “Ultrasonic measurements of the mechanical relaxations and complex stiffnesses in oriented linear polyethylene,” Polymer, vol. 25, no. 4, 1983, pp. 447-451.
[15]A. K. Taraiya, A. Richardson, I. M. Ward, “Production and properties of highly oriented polypropylene by die drawing,” Journal of Applied Polymer Science, vol. 33, no. 7, 1987, pp. 2559-2579.
[16]I. M. Ward, A. P. Wilczynski, “Bounds for the elastic constants of a unidirectional fibre composite: a new approach,” Journal of Materials Science, vol. 28, no. 7, 1993, pp. 1973-1977.
[17]P. J. Hine, I. M. Ward, “Measuring the elastic properties of high-modulus fibres,” Journal of Materials Science, vol. 31, no. 2, 1996, pp. 371-379.
[18]A. K. Taraiya, I. M. Ward, “Production and properties of biaxially oriented polyethylene tubes,” Journal of Applied Polymer Science, vol. 59, no. 4, 1996, pp. 627-638.
[19]I. M. Ward, “Recent developments in oriented polymers for biomedical and engineering applications,” Macromolecular Symposia, vol. 195, no. 1, 2003, pp. 293-296.
[20]A. K. Taraiya, M. S. Mirza, J. Mohanraj, D. C. Barton, I. M. Ward, “Production and properties of highly oriented polyoxymethylene by die-drawing,” Journal of Applied Polymer Science, vol. 88, no. 5, 2003, pp. 1268-1278.
[21]J. Mohanraj, N. Chapleau, A. Ajji, R. A. Duckett, I. M. Ward, “Production, properties and impact toughness of die-drawn toughened polypropylenes,” Polymer Engineering & Science, vol. 43, no. 6, 2003, pp. 1317-1336.
[22]J. Mohanraj, N. Chapleau, A. Ajji, R. A. Duckett, I. M. Ward, “Fracture behavior of die-drawn toughened polypropylenes,” Journal of Applied Polymer Science, vol. 88, no. 5, 2003, pp. 1336-1345.
[23]N. Chapleau, J. Mohanraj, A. Ajji, I.M. Ward, “Roll-drawing and die-drawing of toughened poly(ethylene terephthalate). Part 1. Structure and mechanical characterization,” Polymer, vol. 46, no. 6, 2005, pp. 1956-1966.
[24]J. Mohanraj, N. Chapleau, A. Ajji, R. A. Duckett, I. M. Ward, “Roll-drawing and die-drawing of toughened poly(ethylene terephthalate). Part 2. Fracture behaviour,” Polymer, vol. 46, no. 6, 2005, pp. 1967-1981.
[25]M. S. Mirza, A. K. Taraiya, I. M. Ward, D. C. Barton, “Coupled thermomechanical simulation of the polymer die drawing process,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 217, no. 2, 2003, pp. 123-132.
[26]J. Mohanraj, M. J. Bonner, D. C. Barton, I. M. Ward, “Analysis and design of profiled dies for the polymer wire die-drawing process,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 221, no. 1, 2007, pp. 47-60.
[27]O. Attia, A. J. Kinloch, F. L. Matthews, “Modelling the fatigue life of polymer–matrix fibre-composite components,” Composites Science and Technology, vol. 61, no. 15, 2001, pp. 2273-2283.
[28]H. K. Lee, B. R. Kim, “Numerical characterization of compressive response and damage evolution in laminated plates containing a cutout,” Composites Science and Technology, vol. 67, no. 11-12, 2007, pp. 2221-2230.
[29]W. He, Z. D. Guan, X. Li, D. B. Liu, “Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure,” Composite Structures, vol. 96, 2013, pp. 232-242.
[30]J. Ricard, F. Guigné, L. Laiarinandrasana, “Damage and fracture mechanisms of polyoxymethylene: Multiscale experimental study and finite element modeling,” Engineering Fracture Mechanics, vol. 115, 2014, pp. 270-283.
[31]Y. Wan, T. Matsuo, I. Ohsawa, J. Takahashi, “Effects of curvature on strength and damage modes of L-shaped carbon fiber-reinforced polypropylene,” Journal of Reinforced Plastics and Composites, vol. 33, no. 14, 2014, pp. 1305-1315.
[32]J. Had, M. Růžička, “Computational analysis of damage in hybrid composite structure,” Composite Structures, vol. 135, 2016, pp. 109-121.
[33]R. G. Budynas, K. J. Nisbett, Shigley’s Mechanical Engineering Design, New York: McGraw-Hill Education, 2015, pp. 230-253.
[34]I. M. Ward, Structure and properties of oriented polymers, London: Chapman & Hall, 1997, pp. 269-289.
[35]宋裕祺、林正偉、王傅輝,「有限元素法在鋼橋局部應力分析之應用與探討」,中華技術,第七十一期,2006,第62-73頁。
[36]士盟瑞其CAE團隊,Abaqus最新實務入門引導,臺灣:全華圖書股份有限公司,2013,第一章,第2-5頁。
[37]Abaqus Inc, Abaqus analysis users manual, Version 6.13 , Abaqus Inc, 2015. (http://abaqus.net/)
[38]Strongwell Corp, EXTREN DESIGN MANUAL, Strongwell Corp, 1997. (http://www.strongwell.com/)
[39]O. Darras, R. A. Duckett, P. J. Hine, I. M. Ward, “Anisotropic elasticity of oriented polyethylene materials,” Composites Science and Technology, vol. 55, no. 2, 1995, pp.131-138.
[40]L. Rubio, J. Fernández-Sáez, C. Navarro, “Determination of dynamic fracture-initiation toughness using three-point bending tests in a modified Hopkinson pressure bar,” Experimental Mechanics, vol. 43, no. 4, 2003, pp.379-386.
電子全文 電子全文(網際網路公開日期:20210808)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔