(3.238.173.209) 您好!臺灣時間:2021/05/17 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:龔書祥
研究生(外文):Shu-Hsiang Kung
論文名稱:利用磁控濺鍍系統製備氧化銦錫鋅奈米複合薄膜與其應用
論文名稱(外文):Applications of ITZO nanocomposite films deposited by magnetron sputtering system
指導教授:魏大華
指導教授(外文):Da-Hua Wei
口試委員:余岳仲陳洋元姚永德魏大華
口試委員(外文):Yueh-Chung YuYang-Yuan ChenYeong-Der YaoDa-Hua Wei
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:可撓式基板紫外光感測器電容式觸碰氧化銦錫鋅磁控濺鍍系統
外文關鍵詞:flexible substrateUV detectorcapacitive touchITZOmagnetron sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
透明導電薄膜 (transparent conductive oxide) 具有高可見光穿透率、極佳導電特性,被廣泛應用於各種光電元件。未來的應用上更可朝向超薄顯示器、大面積電視牆,穿戴式電子元件等發展。本研究是使用磁控濺鍍系統在室溫下製備氧化銦錫鋅(ITZO)複合薄膜應用於紫外光感測器以及金屬氧化物/絕緣層/金屬氧化物(MIM)結構之電容式觸碰面板。本論文可分為三個部分,第一部分為在室溫下以共鍍(co-sputter)製備ITZO複合薄膜,由實驗結果顯示:以共鍍製備之複合薄膜呈現較高的阻態(high-resistance state),通常阻態較高的材料在阻態轉換時有較明顯之差異,適用於感測器之應用;第二部分,採用多層堆疊之複合薄膜(ZnO (ITO/ZnO)x10)其阻態較低,大多落在商用透明導電薄膜的範圍內且具備高穿透之特性,因此多層薄膜應用於透明導電薄膜較為有利,調控氧化銦錫(ITO)厚度(1 nm ~ 10 nm),藉由物性分析等方式進行量測探討,進而發現當ITO厚度約10 nm時會有最低的片電阻(~ 400 Ω/sq)。第三部分為使用最佳化之多層薄膜使用於電容觸碰面板,將複合薄膜圖案化,讓IC能偵測到使用者滑動的方向進而判斷訊號;最後把相同的製程應用在可撓性基板上,也能達到相同的效果。以利未來穿戴式電子元件或主動式陣列有機發光二極體(AMOLED)之開發。
Transparent conducting oxide (TCO) film is widely used as electrodes in optoelectronic devices such as ultrathin liquid crystal displays, video walls and wearable electronic devices due to its low resistivity and high transmittance in the visible region. In this study, indium-tin-zinc oxide (ITZO) nanocomposite films were prepared in two different ways on glass substrates by magnetron sputtering at room temperature. At first, ITZO thin films were co-sputtered of ZnO and ITO targets in pure argon gas atmosphere, as shown in results, the electric property of ITZO nanocomposite films exhibits in high-resistance state (HRS), therefore, it is suitable for sensor applications due to its significant resistance state switching as reported by many research works. At the same time, ITO/ZnO multilayer structure were also presented and discussed in detail. ITO/ZnO multilayers composed of ten periods of [ITO (x nm)/ZnO (10 nm)] were prepared, the thickness of the ITO inserted layers were from 1 nm to 10 nm. According to analysis of Hall effect, the resistance of the multilayer films decreased to the lowest value of 400 Ω/sq while inserting a 10 nm-thick ITO layer. All the samples show an excellent transmittance over 80%. Above of all results, ITO/ZnO multilayers can be regarded as a great transparent conducting oxide film and used as electrodes in capacitive touch sensor. Finally, the valuable applications by patterning of the optimized ITO/ZnO multilayer electrode for capacitive-type touch screen panels (TSPs) have been demonstrated in this present thesis, and it is possibility of using ITO/ZnO multilayer electrodes to replace conventional TCO electrodes for next generation optoelectronic industry.
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2研究動機與目的 3
1.3本文架構 4
第二章 文獻回顧 5
2.1 氧化鋅基本特性簡介 5
表2.1 氧化鋅物理性質表[64] 7
表2.2 不同透明導電薄膜的基本性質比較[66] 7
表2.3 氧化鋅摻雜的光學性質與相關文獻 8
2.2氧化銦錫基本特性簡介 8
2.3透明導電薄膜簡介 10
表2.4金屬薄膜與金屬氧化物半導體薄膜特性比較 11
2.4 透明導電薄膜的導電與穿透原理 12
2.4.1 透明導電薄膜的導電原理 12
2.4.2 透明導電薄膜的透光原理 14
2.5 光感測器相關介紹及原理 15
2.5.1 歐姆接觸 16
2.5.2 蕭基接觸 18
2.5.3 金屬-半導體-金屬結構之光偵測器原理 19
2.6 氧化銦錫鋅與氧化銦鎵鋅之比較 20
2.7 電阻式觸碰面板 v.s 電容式觸碰面板 25
2.7.1 電阻式觸碰面板 25
2.7.2 電容式觸碰面板 26
2.8 濺鍍法 28
2.8.1濺鍍原理 28
2.8.2濺鍍系統 28
2.9 薄膜成長理論 30
第三章 實驗流程及步驟 35
3.1實驗架構流程設計 35
3.2實驗步驟 37
3.2.1基板清洗與準備 37
3.2.2製備(ZnO, ITO)複合薄膜 37
表3.1 利用直流和射頻磁控濺鍍製備複合薄膜之製程條件 38
3.2.3製備(ZnO (ITO / ZnO)×10)多層薄膜 39
表3.2 利用直流和射頻磁控濺鍍製備多層薄膜之製程條件 40
3.2.4製備電容觸碰開關之元件 40
表 3.3 電容觸碰開關元件之製程參數 42
3.3研究設備 43
3.4薄膜特性分析儀器介紹 44
3.4.1場發射掃描式電子顯微鏡(FE-SEM)[124] 44
3.4.2原子力顯微鏡(AFM)[125] 46
3.4.3 X-ray繞射晶體結構分析儀(XRD)[126] 48
3.4.4 螢光發光光譜儀(PL)[127-128] 50
3.4.5 紫外光可見光分光光譜儀(UV/VIS Spectophotometer) 51
3.4.6 霍爾效應量測分析儀(Hall effect measurement system) 52
3.4.7 光電導量測系統(Photoconductive measurement system) 53
第四章 結果與討論 54
4.1紫外光感測器之複合薄膜參數最佳化-改變氧化銦錫直流功率 54
4.1.1 薄膜厚度量測 54
4.1.2 XRD結晶性分析 55
4.1.3 SEM表面形貌分析 55
4.1.4 EDS原子含量分析 56
4.1.5 AFM表面粗糙度分析 56
4.1.6 PL發光特性分析 56
4.1.7 UV/Vis光譜光特性分析 57
4.1.8 Hall measurement電性分析 58
4.1.9紫外光感測器之應用 59
4.1.10紫外光感測器加溫之應用 59
4.2 優化(ZnO (ITO / ZnO)×10)多層薄膜之光電特性 77
4.2.1 XRD 結晶性分析 77
4.2.2 SEM表面形貌分析 77
4.2.3 AFM表面粗糙度分析 78
4.2.4 PL發光特性分析 78
4.2.5 UV/Vis光譜光特性分析 78
4.2.6 薄膜電性分析 79
4.3 電容觸碰開關 88
4.3.1 電容式觸碰開關實際操作 88
4.3.2 電容式手寫板實際操作 88
第五章 結論 93
5.1 結論 93
5.2 未來展望 94
參考文獻
作者簡介 114
[1]李玉華,透明導電膜及其應用,科儀新知,第12卷第1期,79,第94-102頁。
[2]楊明輝,金屬氧化物透明導電材料的基本原理,工業材料,第179卷,2001, 第134-144頁。
[3]曲喜新,楊邦朝,姜節儉,張懷武,電子薄膜材料,北京科學出版社,1996,第93頁。
[4]S. Elmas, and S. Korkmaz, S. Pat, “Optical characterization of deposited ITO thin films on glass and PET substrates,” Applied Surface Science, vol. 276, 2013, pp. 641-645.
[5]J. H. Parka, C. Buurmaa, S. Sivananthana, R. Kodamab, W. Gaob, add T. A. Gessertc, “The effect of post-annealing on Indium Tin Oxide thin films by magnetron sputtering method,” Applied Surface Science, vol. 307, 2014, pp. 388-392.
[6]S. M. Song, T. L. Yanga, J. J. Liu, Y. Q. Xin, Y. H. Li , and S. H. Han, “Rapid thermal annealing of ITO films” Applied Surface Science, vol. 257, 2011, pp. 7061-7064.
[7]C. H. Yang, S. C. Lee, T. C. Lin, and S. C. Chen, “Electrical and optical properties of indium tin oxide films prepared on plastic substrates by radio frequency magnetron sputtering,” Thin Solid Films, vol. 516, 2008, pp. 1984-1991.
[8]S. Kaleemulla, A. Sivasankar Reddy, S. Uthanna, P. Sreedhara Reddy, “Physical properties of In2O3 thin films prepared at various oxygen,” Journal of Alloys and Compounds, vol. 479, 2009, pp. 589-593.
[9]Y. Sato, F. Otake, and H. Hatori, “A Dependence of Crystallinity of In2O3 Thin Films by a Two-Step Heat Treatment of Indium Films on the Heating Atmosphere,” Journal of Modern Physics, vol. 1, 2010, pp. 360-363.
[10]Z. J. Yuan, X. M. Zhu, X. Wang, X. K. Cai, B. P. Zhang, D. J. Qiu, and H. Z. Wu, “Annealing effects of In2O3 thin films on electrical properties and application in thin film transistors,” Thin Solid Films, vol. 519, 2011, pp. 3254-3258.
[11]M. A. Sánchez-García, A. Maldonado, L. Castañeda, R. Silva-González, and M. de la Luz Olvera, “Characteristics of SnO2:F Thin Films Deposited by Ultrasonic Spray Pyrolysis: Effect of Water Content in Solution and Substrate Temperature,” Materials Sciences and Applications, vol. 3, 2012, pp. 690-696.
[12]D. W. Choi, and J. S. Park, “Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant,” Surface and Coatings Technology, vol. 259, part B, 2014, pp. 238-243.
[13]M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition,” Applied Physics Letters, vol. 78, 2001, pp. 2342-2344.
[14]P. K. Ghosh, R. Maity, and K. K. Chattopadhyay, “Electrical and optical properties of highly conducting CdO:F thin film deposited by sol–gel dip coating technique,” Solar Energy Materials & Solar Cells, vol. 81, 2004, pp. 279-289.
[15]D. M. Ellis, S. J. C. Irvine, “MOCVD of highly conductive CdO thin films,” Journal of Materials Science: Materials in Electronics, vol. 15, 2004, pp. 369-372
[16]L. Kerkachea, A. Layadia, A. Mosser, “Effect of oxygen partial pressure on the structural and optical properties of dc sputtered ITO thin films,” Journal of Alloys and Compounds, vol. 485, 2009, pp. 46-50.
[17]K. Budzynska, and E. Leja, “Transparent conductive Cdln2O4 thin films prepared by DC reactive sputtering,” Solar Energy Materials, vol. 12, 1985, pp. 57-68.
[18]T. Pisarkiewicz, K. Zakrzewska, and E. Leja, “Preparation, electrical properties and optical characterization of Cd2SnO4 and CdIn2O4 thin films as transparent and conductive,” Thin Solid Films, vol. 153, 1987, pp. 479-486.
[19]C. J. Diliegros Godines, C. G. Torres Castanedo, R. Castanedo Pérez, G. Torres Delgado, and O. Zelaya Ángel, “Transparent conductive thin films of Cd2SnO4 obtained by the sol–gel technique and their use in a solar cell made with CdTe,” Solar Energy Materials and Solar Cells, vol. 128, 2014, pp. 150-155.
[20]J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, B. Cheong, and W. M. Kim, “Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach,” Applied Surface Science, vol. 253, 2007, pp. 7398-7403.
[21]Y. S. S. Sato , J. Kiyohara, A. Hasegawa, T. S. Hattori, M. S. Y. Ishida, N. Hamada, N. Oka, and Y. Shigesato, “Study on inverse spinel zinc stannate, Zn2SnO4, as transparent conductive films deposited by rf magnetron sputtering,” Thin Solid Films, vol. 518, 2009, pp. 1304-1308.
[22]D. L. Raimondi, and E. Kay, “High Resistivity Transparent ZnO Thin Films,” Journal of Vacuum Science & Technology, vol. 7, 1970, pp. 96-99.
[23]Q. H. You, H. Cai, K. Gao, Z. G. Huc, S. Guo, P. P. Liang, J. Sun, N. Xu, J. D. Wu, “Highly transparent and conductive Al-doped ZnO films synthesized by pulsed laser co-ablation of Zn and Al targets assisted by oxygen plasma,” Journal of Alloys and Compounds, vol. 626, 2015, pp. 415-420.
[24]V. Devi, M. Kumar, D. K. Shukla, R. J. Choudhary, D. M. Phase, R. Kumar, and B. C. Joshi, “Structural, optical and electronic structure studies of Al doped ZnO thin films,” Superlattices and Microstructures, vol. 83, 2015, pp. 431-438.
[25]Ravindra G. Waykar, Amit S. Pawbake, Rupali R. Kulkarni, Ashok A. Jadhavar, Adinath M. Funde, Vaishali S. Waman, Habib M. Pathan, and Sandesh R. Jadkar, “Influence of RF power on structural, morphology, electrical, composition and optical properties of Al-doped ZnO films deposited by RF magnetron sputtering,” Journal of Materials Science: Materials in Electronics, vol. 27, 2015, pp. 1134-1143.
[26]G. A. Hirata, J. McKittrick, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, and O. A. Lopez, “Synthesis and optoelectronic characterization of gallium doped zinc oxide transparent electrodes,” Thin Solid Films, vol. 288, 1996, pp. 29-31.
[27]J. Y. Tseng, Y. T. Chen, M. Y. Yang, C. Y. Wang, P. C. Li, W. C. Yu, Y. F. Hsu, and S. F. Wang, “Deposition of low-resistivity gallium-doped zinc oxide films by low-temperature radio-frequency magnetron sputtering,” Thin Solid Films, vol. 517, 2009, pp. 6310-6314.
[28]Mehmet Yilmaz, “Investigation of characteristics of ZnO:Ga nanocrystalline thin
films with varying dopant content,” Materials Sciencein Semiconductor Processing, vol. 40, 2015, pp. 99-106.
[29]C. S. Huang, and C. C. Liu, “The optical and electrical properties of gallium-doped ZnO thin film with post-annealing processes of various atmospheres,” Microelectronic Engineering, vol. 148, 2015, pp. 59-63.
[30]M. Caglar, S. Ilican, and Y. Caglar, “Influence of dopant concentration on the optical properties of ZnO: In films by sol–gel method,” Thin Solid Films, vol. 517, 2009, pp. 5023-5028.
[31]C. E. Benouis, M. Benhaliliba, A. Sanchez Juarez, M. S. Aida, F. Chami, and F. Yakuphanoglu, “The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films,” Journal of Alloys and Compounds, vol. 490, 2010, pp. 62-67.
[32]R. Biswal, A. Maldonado, J. Vega-Pérez, D. Roberto Acosta, and M. D. L. L. Olvera, “Indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique, starting from zinc acetylacetonate and indium chloride,” Materials, vol. 7, 2014, pp. 5038-5046.
[33]R. Heinhold, R. J. Reeves, G. T. Williams, D. A. Evans, and M. W. Allen, “Mobility of indium on the ZnO(0001) surface,” Applied Physics Letters, vol. 106, 2015, p. 051606.
[34]K. Makise, K. Hidaka, S. Ezaki, T. Asano, B. Shinozaki, S. Tomai, K. Yano, and H. Nakamura, “Metal-insulator transitions in IZO, IGZO, and ITZO films,” Journal of Applied Physics, vol. 116, 2014, p. 153703.
[35]S. K. Jeong, M. H. Kim, S. Y. Lee, H. Seo, and D. K. Choi, “Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping,” Nanoscale Research Letters, vol. 9, 2014, p. 619.
[36]A. Nadarajah, M. Z. B. Wu, K. Archila, M. G. Kast, A. M. Smith, T. H. Chiang, D. A. Keszler, J. F. Wager, and S. W. Boettcher, “Amorphous In−Ga−Zn oxide semiconducting thin films with high mobility from electrochemically generated aqueous nanocluster inks,” Chemistry of Materials, vol. 27, 2015, pp. 5587-5596.
[37]C. M. Hsu , W. C. Tzou, C. F. Yang, and Y. J. Liou, “Investigation of the high mobility IGZO thin films by using co-sputtering method,” Materials, vol. 8, 2015, pp. 2769-2781.
[38]G. S. Chae, “A modified transparent conducting oxide for flat panel displays only,” Japanese Journal of Applied Physics, vol. 40, 2001, pp. 1282-1286.
[39]Y. M. Kang, D. Y. Lee, J. R. Lee, P. K. Song, G. H. Lee, and J. H. Yoon, “Transparent conductive ITZO films deposited by using a magnetron co-sputtering system using two cathodes,” Journal of the Korean Physical Society, vol. 55, 2009, pp. 1901-1905.
[40]D. H. Kim, Y. S. Rim, K. H. Kim, and I. H. Son, “Properties of IZTO thin films prepared by using a hetero-target sputtering system,” Journal of the Korean Physical Society, vol. 54, 2009, pp. 1309-1314.
[41]C. A. Hoel, T. O. Mason, J. F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chemistry of Materials, vol. 22, 2010, pp. 3569-3579.
[42]Y. D. Ko, J. Y. Kim, H. C. Joung, S. H. Ahn, K. S. Jang, Y. J. Lee, and J. Yi, “Low temperature deposited transparent conductive ITO and IZTO films for flat panel display applications,” Journal of Ceramic Processing Research, vol. 14, 2013, pp. 183-187.
[43]T. F. Stoica , V. S. Teodorescu, M. G. Blanchin, T. A. Stoica, M. Gartner, M. Losurdo, and M. Zaharescu, “Morphology, structure and optical properties of sol-gel ITO thin films,” Materials Science and Engineering, vol. B101, 2003, pp. 222-226.
[44]H. Y. Valencia, L. C. Moreno, A. M. Ardila, “Structural, electrical and optical analysis of ITO thin films prepared by sol–gel,” Microelectronics Journal, vol. 39, 2008, pp. 1356-1357.
[45]H. Cho, and Y. H. Yun, “Characterization of indium tin oxide (ITO) thin films prepared by a sol–gel spin coating process,” Ceramics International, vol. 37, 2011, pp. 615-619.
[46]D. M. Lee, J. K. Kim, J. C. Hao, H. K. Kim, J. S. Yoon, and J. M. Lee, “Effects of annealing and plasma treatment on the electrical and optical properties of spin-coated ITZO films,” Journal of Alloys and Compounds, vol. 583, 2014, pp. 535-5538.
[47]T. Maruyama, and K. Tabata, “Indium-tin oxide thin films prepared by chemical vapor deposition from metal acetates,” Japanese Journal of Applied Physics, vol. 29, 1990, pp. L335-L357.
[48]T. Maruyama, and K. Fukui, “Indium tin oxide thin films prepared by chemical vapor deposition,” Thin Solid Films, vol. 203, 1991, pp. 297-302.
[49]S. Urakawa, S. Tomai, Y. Ueoka, H. Yamazaki, and M. Kasami, “Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect,” Applied Physics Letters, vol. 102, 2013, p. 053506.
[50]F. F. Ngaffo, A. P. Caricato, A. Fazzi, M. Fernandez, S. Lattante, M. Martino, and F. Romano, “Deposition of ITO films on SiO2 substrates,” Applied Surface Science, vol. 248, 2005, pp. 428-432.
[51]M. A. Noginov, Lei Gu, J. Livenere, G. Zhu, and A. K. Pradhan, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Applied Physics Letters, vol. 99, 2011, p. 021101.
[52]Y. L. Liu, Y. F. Li, and H. B. Zeng, “ZnO-based transparent conductive thin films: doping, performance, and processing,” Journal of Nanomaterials, vol. 2013, 2013, p. 196521.
[53]T. Minami, T. Yamamoto, Y. Toda, and T. Miyata, “Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering,” Thin Solid Films, vol. 373, 2000, pp. 189-194.
[54]D. S. Liu, C. C. Wu, and C. T. Lee, “A transparent and conductive film prepared by RF magnetron cosputtering system at room temperature,” Japanese Journal of Applied Physics, vol. 44, 2005, pp. 5119-5121.
[55]A. Donato, F. D. Corte, M. Gioffrè, N. Donato, A. Bonavita, G. Micali, and G. Neri, “RF sputtered ZnO–ITO films for high temperature CO sensors,” Thin Solid Films, vol. 517, 2009, pp. 6184-6187.
[56]Y. M. Kang, D. Y. Lee, J. R. Lee, and P. K. Song, “Transparent conductive ITZO films deposited by using a magnetron co-sputtering system using wwo cathodes,” Journal of the Korean Physical Society, vol. 55, 2009, pp. 1901-1905.
[57]D. Kudryashov, A. Gudovskikh, and K. Zelentsov, “Low temperature growth of ITO transparent conductive oxide layers in oxygen-free environment by RF magnetron sputtering,” Journal of Physics: Conference Series, vol. 461, 2013, p. 012021.
[58]P. W. Chi, D. H. Wei, S. H. Wu, Y. Y. Chen, and Y. D. Yao, “Photoluminescence and wettability control of NiFe/ZnO heterostructure bilayer films,” Royal Society of Chemistry, vol. 5, 2015, pp. 96705-96713.
[59]紀柏葦,鎳鐵/氧化鋅複合薄膜之結構、磁、光、介電性質研究,碩士論文,台北科技大學,台北,2012。
[60]蘇智偉,光誘導氧化鋅薄膜之表面潤濕最佳化研究,碩士論文,台北科技大學,台北,2014。
[61]卓柏宏,鐵鉑-氧化鋅異質接面之電阻轉換特性影響,碩士論文,台北科技大學,台北,2014。
[62]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, "Room-temperature ultraviolet Ultrahydrophobic from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, 1998, pp. 3270-3272.
[63]C. H. Chao, M. Y. Chen, C. R. Lin, Y. C. Yu, Y. D. Yao and D. H. Wei, "Postannealing effect at various gas ambients on ohmic contacts of Pt/ZnO nanobilayers toward Ultraviolet Photodetectors," International Journal of Photoenergy, vol. 2013, 2013, p. 372869.
[64]D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Materialstoday, vol. 7, 2004, pp. 34-40.
[65]T. Minami, “New n-type transparent conducting oxides,” Materials Research Society, vol. 25, 2000, pp. 38-44.
[66]R. G. Gordon, “Criteria for choosing transparent conductors,” Materials Research Society, vol. 25, 2000, pp. 52-58.
[67]M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, “Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering,” Journal of Vacuum Science & Technology A, vol. 19, 2001, pp. 964-970.
[68]A. Hideaki, S. Akio, M. Tatsuhiko, A. Takanori, and O. Masahiro, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films, vol. 445, 2003, pp. 263-267.
[69]C. Agashe, O. Kluth, J. Hu¨pkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” Journal of Applied Physics, vol. 95, 2004, pp. 1911-1917.
[70]E. Fortunato, V. Assunção, A. Marques, I. Ferreira, H. Águas, L. Pereira, and R. Martins, “Characterization of transparent and conductive ZnO:Ga thin films produced by RF sputtering at room temperature,” Materials Research Society, vol. 763, 2003, B5.19.1.
[71]J. J. Robbins, J. Harvey, J. Leaf, C. Fry, and C. A. Wolden, “Transport phenomena in high performance nanocrystalline ZnO:Ga films deposited by plasma-enhanced chemical vapor,” Thin Solid Films, vol. 473, 2005, pp. 35-40.
[72]J. H. Lim, D. K. Hwang, H. S. Kim, J. Y. Oh, J. H. Yang, R. Navamathavan, and S. J. Park, “Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN,” Applied Physics Letters, vol. 85, 2004, pp. 6191-6193.
[73]B. J. Lokhande, P. S. Patila, and M. D. Uplane, “Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique,” Physica B: Condensed Matter, vol. 302-303, 2001, pp. 59-63.
[74]T. Minami, T. Yamamoto, and T. Miyata, “Highly Transparent and Conductive Rare Earth-doped ZnO Thin Films Prepared by Magnetron Sputtering,” Thin Solid Films, vol. 366, 2000, pp. 63-68.
[75]T. Minami, H. Sato, H. Nanto, and S. Takata, “Highly conductive and transparent silicon doped zinc oxide thin films prepared by RF magnetron sputtering,” Japanese Journal of Applied Physics, vol. 25 , 1986, pp. L776-L779.
[76]T. Miyata, S. Suzuki, M. Ishii, and T. Minami, “New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering,” Thin Solid Films, vol. 411, 2002, pp. 76-81.
[77]C. S. Wua, B. T. Lin, and M. D. Jean, “Improving the conductance of ZnO thin film doping with Ti by using a cathodic vacuum arc deposition process,” vol. 519, 2011, pp. 5103-5105.
[78]S. B. Qadri, H. Kim, J. S. Horwitz, and D. B. Chrisey, “Transparent conducting films of ZnO–ZrO2: structure and properties,” Journal of Applied Physics, vol. 88, 2000, pp. 6564-6566.
[79]R. Kaur, A. V. Singh, and R. M. Mehr, “Structural, electrical and optical properties of sol-gel derived yttrium doped ZnO films,” Physica Status Solidi (a), vol. 202, 2005, pp. 1053-1059.
[80]M. Olvera, A. Maldonado, R. Asomoza, O. Solorza, and D. R. Acosta, “Characteristics of ZnO:F Thin Films Obtained by Chemical Spray : Effect of the Molarity and the Doping Concentration,” Thin Solid Films, vol. 394, 2001, pp. 241-248.
[81]U. Betz, M. K. Olsson, J. Marthy, M. F. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: Large area flat panel displays application,” Surface and Coatings Technology, vol. 200, 2006, pp. 5751-5759.
[82]V. A. Dao, H. Choi, J. Heo, H. Park, K. Yoon, Y. Lee, Y. Kim, N. Lakshminarayan, and J. Yi, “rf-Magnetron sputtered ITO thin films for improved heterojunction solar cell applications,” Current Applied Physics, vol. 10, 2010, pp. S506-S509.
[83]L. Y. Yanga, X. Z. Chena, H. Xua, D. Q. Yea, H. Tiana, and S. G. Yina, “Surface modification of indium tin oxide anode with self-assembled monolayer modified Ag film for improved OLED device characteristics,” Applied Surface Science, vol. 254, 2008, pp. 5055-5060.
[84]H. Han, D. Adams, J. W. Mayer, and T. L. Alford, “Characterization of the physical and electrical properties of Indium tin oxide on polyethylene napthalate,” Journal of Applied Physics, vol. 98, 2005, p. 083705.
[85]楊明輝,金屬氧化物透明導電材料的基本原理,工業材料,179期,2002,第134-144頁。
[86]T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Institute of Physics Publishing, vol. 20, 2005, pp. S35-S44.
[87]E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb+F),” Journal of Applied Physics, vol. 53, 1982, pp. 1615-1620.
[88]J. J. Robbins, and C. A. Wolden, “High mobility oxides: engineered structures to overcome intrinsic performance limitations of transparent conducting oxides,” Applied Physics Letters, vol. 83, 2003, pp. 3933-3935.
[89]K. W. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors, vol. 10, 2010, pp. 8604-8634.
[90]L. Guoa, H. Zhanga, D. G. Zhao, B. H. Li, Z. H. Zhanga, M. M. Jianga, and D. Z. Shena, “High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method,” Sensors and Actuators B: Chemical, vol. 166-167, 2012, pp. 12-16.
[91]C. H. Chao, W. J. Weng, and D. H. Wei, “Enhanced UV photodetector response and recovery times using a nonpolar ZnO sensing layer,” Journal of Vacuum Science & Technology A, vol. 34, 2016, 02D106.
[92]X. J. Zhang, and G. J. Qiao, “High performance ethanol sensing films fabricated from ZnO and In2O3 nanofibers with a double-layer structure,” Applied Surface Science, vol. 258, 2012, pp. 6643-6647.
[93]S. Palimar, K. V. Bangera, and G. K. Shivakumar, “Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide,” Applied Nanoscience, vol. 3, 2013, pp. 549-553.
[94]J. J. Qi, H. Zhang, S. N. Lu, X. Li, M. X. Xu, and Y. Zhang, “High performance indium-doped ZnO gas sensor,” Journal of Nanomaterials, vol. 2015, 2014, p. 954747.
[95]M. Hjiri, R. Dhahri, K. Omri, L. ElMir, S. G. Leonardi, N. Donato, and G. Neri, “Effect of indium doping on ZnO based-gas sensor for CO,” Materials Science in Semiconductor Processing, vol. 27, 2014, pp. 319-325.
[96]B. Y. Huang, C. H. Zhao, M. X. Zhang, Z. M. Zhang, E. Xie, J. Y. Zhou, and W. H. Han, “Doping effect of In2O3on structural and ethanol-sensing characteristics of ZnO nanotubes fabricated by electrospinning,” Applied Surface Science, vol. 349, 2015, pp. 615-621.
[97]汪建民,材料分析,中國材料科學學會,新竹市,1997。
[98]R. A. Meyers, “Encyclopedia of analytical chemistry,” John Wiley & Sons Ltd, Chichester, 2000.
[99]S. H. K. Park, C. S. Hwang, M. K. Ryu, S. H. Yang, C. W. Byun, J. Shin, J. I. Lee, K. M. Lee, M. S. Oh, and S. G. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Advanced Materials, vol. 21, 2009, pp. 678-682.
[100]J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, “Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display,” IEEE Electron Device Letters, vol. 29, 2008, pp. 1309-1311.
[101]P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, “Toward high-performance amorphous GIZO TFTs,” Journal of The Electrochemical Society, vol. 156, 2009, pp. H161-H168.
[102]K. J. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, 2004, pp. 488-491.
[103]D. H. Kim, N. G. Cho, H. G. Kim, H. S. Kim, J. M. Hong, and I. D. Kim, “Low voltage operating InGaZnO4 thin film transistors using high- k MgO – Ba0.6Sr0.4 TiO3 composite gate dielectric on plastic substrate,” Applied Physics Letters, vol. 93, 2008, p. 032901.
[104]P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, “The influence of visible light on transparent zinc tin oxide thin film transistors,” Applied Physics Letters, vol. 91, 2007, p. 193504.
[105]M. G. McDowell, R. J. Sanderson, and I. G. Hill, “Combinatorial study of zinc tin oxide thin-film transistors,” Applied Physics Letters, vol. 92, 2008, p. 013502.
[106]E. M. C. Fortunato, L. M. N. Pereira, P. M. C. Barquinha, A. M. Botelho do Rego, G. Gonçalves, A. Vilà, J. R. Morante, and R. F. P. Martins, “High mobility indium free amorphous oxide thin film transistors,” Applied Physics Letters, vol. 92, 2008, p. 222103.
[107]S. Y. Sung, J. H. Choi, U. B. Han, K. C. Lee, J. H. Lee, J. J. Kim, W. Lim, S. J. Pearton, D. P. Norton, and Y. W. Heo, “Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors,” Applied Physics Letters, vol. 96, 2010, p. 102107.
[108]T. H. Chiang, B. S. Yeh, and J. F. Wager, “Amorphous IGZO thin-film transistors with ultrathin channel layers,” IEEE Transactions on Electron Devices, vol. 62, 2015, pp. 3692-3696.
[109]J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors,” Applied Physics Letters, vol. 96, 2010, p. 102107.
[110]M. K. Ryu, S. H. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, “High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: Combinatorial approach,” Applied Physics Letters, vol. 95, 2009, p. 072104.
[111]D. H. Lee, S. Y. Han, G. S. Hermanc, and C. H. Chang, “Inkjet printed high-mobility indium zinc tin oxide thin film transistors,” Journal of Materials Chemistry, vol. 19, 2009, pp. 3135-3137.
[112]S. H. Yang, J. Y. Kim, M. J. Park, K. H. Choi, J. S. Kwak, H. K. Kim, and J. M. Lee, “Low resistance ohmic contacts to amorphous IGZO thin films by hydrogen plasma treatment,” Surface & Coatings Technology, vol. 206, 2012, pp. 5067-5071.
[113]J. W. Seo, Y. H. Joung, and S. J. Kang, “Electrical and optical properties of ITZO thin films deposited by rf magnetron sputtering,” Journal of the Korea Institute of Information and Communication Engineering, vol. 17, 2013, pp. 1873-1878.
[114]Y. G. Jia, C. Chen, D. Jia, S. X. Li, S. L. Ji, and C. H. Ye, “Silver nanowire transparent conductive films with high uniformity fabricated via a dynamic heating method,” ACS Applied Materials & Interfaces, vol. 8, 2016, pp. 9865-9871.
[115]Y. H. Shin, C. K. Cho, and H. K. Kim, “Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels,“ Thin Solid Films, vol. 548, 2013, pp. 641-645.
[116]D. M. Mattox, “Particle bombardment effects on thin‐film deposition: A review,” Journal of Vacuum Science & Technology A, vol. 7, 1989, pp. 1105-1114.
[117]江政忠,真空技術與應用,新竹:行政院國家科學委員會精密儀器發展中心,2004,第369-387頁。
[118]C. Guillén, and J. Herrero, “Stability of sputtered ITO thin films to the damp-heat test,” Surface & Coatings Technology, vol. 201, 2006, pp. 309-312.
[119]莊達人,VLSI 製造技術,台北市:高立圖書有限公司,1999,第147-157 頁。
[120]張書瀚,以濺鍍法沉積矽摻雜氮化鋁箔膜之電性研究,碩士論文,中原大學,126,桃園,2014。
[121]J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science & Technology, vol. 11, 1974, pp. 666-670.
[122]J. Y. Tseng, W. C. Yu, C. W. Hsu, C. J. Ho, T. S. Lin, C. Y. Wang, Y. F. Hsu and S. F. Wang, "Deposition of low resistivity gallium-doped znic oxide fims by low temperature radio-frequency magnetron sputtering," EMRS 2008 Spring Meeting, 128 France, 2008.
[123]R. W. Berry, P. M. Hall and M. T. Harris, Thin Film Technology, New York : Van Nostrand Reinhold, 1980, p. 201.
[124]蔡信行、孫光中,奈米科技導論-基本原理及應用,台北,新文京開發出版股份有限公司,2004。
[125]羅吉宗,薄膜科技與應用,台北,全華圖書股份有限公司,2009。
[126]謝樹恩、吳泰伯,X 光繞射原理與材料結構分析,新竹,中國材料科學學會,2005。
[127]汪建民,材料分析,新竹,中國材料科學學會,1998。
[128]謝家民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理、架構及應用, 奈米通訊,第12 卷2 期,第28-39 頁。
[129]A. P. Rambu, N. Iftimie, and V. Nica, “Effect of In incorporation on the structural, electrical, and gas sensing properties of ZnO films,” Journal of Materials Science, vol. 47, 2012, pp. 6979-6985.
[130]C. S. Lee, I. D. Kim, and J. H. Lee, “Selective and sensitive detection of trimethylamine using ZnO-In2O3 composite nanofibers,” Sensors and Actuators B: Chemical, vol. 181, 2013, pp. 463-470.
[131]D. Y. Lee, J. R. Lee, G. H. Lee, and P. K. Song, “Study on In-Zn-Sn-O and In-Sn-Zn-O films deposited on PET substrate by magnetron co-sputtering system,” Surface &Coatings Technology, vol. 202, 2008, pp. 5718-5723.
[132]H. Lu, Z. Zheng, X. Lin, F. Xu and H. Bi, "Grain growth behavior, surface morphology evolution, structures, and optical properties of ZnO thin films prepared by RF reactive magnetron sputtering," Journal of Optoelectronics and Advanced Materials, vol. 16, 2014, pp. 170-175.
[133]H. Z. Wu, D. J. Qiu, Y. J. Cai, X. L. Xu and N. B. Chen, "Optical studies of ZnO quantum dots grown on Si(0 0 1)," Journal of Crystal Growth, vol. 245, 2002, pp. 50-55.
[134]R. K. Shukla, A. Srivastava, A. Srivastava, and K. C. Dubey, “Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition,” Journal of Crystal Growth, vol. 294, 2006, pp. 427-431.
[135]K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, and S. J. Park, "The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 87, 2000, p. 3573.
[136]Y. H. Kang, J. H. Choi, T. I. Lee, W. Lee and J. M. Myoung, "Thickness dependence of the resistive switching behavior of nonvolatile memory device structures based on undoped ZnO films," Solid Sate Communications, vol. 151, 2011, pp. 1739-1742.
[137]V. Devi, B. C. Joshi, M. Kumar, and R. J. Choudhary, “Structural and optical properties of Cd and Mg doped zinc oxide thin films deposited by pulsed laser deposition,” Journal of Physics: Conference Series, vol. 534, 2014, p. 012047.
[138]T. M. K. Thandavan, S. M. A. Gani, and C. S. Wong, and R. Md. Nor, “Enhanced photoluminescence and raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass,” PLOS ONE, vol. 10, 2015,p. 0121756.
[139]B. Joseph, P. K. Manoj, and V. K. Vaidyan, “Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition,” Ceramics International, vol. 32, 2006, pp. 487-493.
[140]H. K. Yadav, K. Sreenivas, and V. Gupta, “Influence of postdeposition annealing on the structural and optical properties of cosputtered Mn doped ZnO thin films,” Journal of Applied Physics, vol. 99, 2006, p. 083507.
[141]S. Chirakkara , K. K. Nanda, and S. B. Krupanidhi, “Pulsed laser deposited ZnO:In as transparent conducting oxide,” Thin Solid Films, vol. 519, 2011, pp. 3647-3652.
[142]陳柏瑋,藉由金屬鉑提升摻鋁氧化鋅導電特性之結構與光電研究,碩士論文,國立高雄應用科技大學,高雄,2011。
[143]T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Highly transparent and conductive Zn2In2O5 thin films prepared by RF magnetron sputtering,” Japanese Journal of Applied Physics, vol. 34, 1995, pp. 971-974.
[144]C. Y. Lo, C. L. Hsu, Q. X. Yu, H. Y. Lee, and C. T. Lee, “Investigation of transparent and conductive undoped Zn2In2O5-x films deposited on n-type GaN layers,” Journal of Applied Physics, vol. 92, 2002, pp. 274-280.
[145]H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1−xO/Ag/MgxZn1−xO multilayers as high-performance transparent conductive electrodes,” ACS Applied Materials & Interfaces, vol. 8, 2014, pp. 1565-1570.
[146]C. W. Cheng, I. M. Lee, and J. S. Chen, “Femtosecond laser-induced nanoperiodic structures and simultaneous crystallization in amorphous indium-tin-oxide thin films,” Applied Surface Science, vol. 316, 2014, pp. 9-14.
[147]K. W. Sun, W. C. Zhou, X. F. Tang, Z. B. Huang, F. Luo, and D. M. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surface & Coatings Technology, vol. 206, 2012, pp. 4095-4098.
[148]S. M. Song, T. L. Yang, J. J. Liu, Y. Q. Xin, Y. H. Li, and S. H. Han, “Rapid thermal annealing of ITO films,” Applied Surface Science, vol. 257, 2011, pp. 7061-7064.
[149]E. Pál, and I. Dékány, “Structural, optical and photoelectric properties of indium-doped zinc oxide nanoparticles prepared in dimethyl sulphoxide,” Colloids and Surfaces, vol. 318, 2008, pp. 141-150.
[150]K. C. Yung, H. Liem, and H. S. Choy, “Enhanced redshift of the optical band gap in Sn-doped ZnO free standing films using the sol-gel method,” Journal of Physics D: Applied Physics, vol. 42, 2009, p. 185002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top