跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁偉傑
研究生(外文):Wei-Jie Weng
論文名稱:藉由水熱法合成極性與非極性氧化鋅奈米住之紫外光感測器
論文名稱(外文):Fabrication of polar and nonpolar ZnO nanowrods for UV photodetectors applications by Hydrothermal Method
指導教授:魏大華
指導教授(外文):Da-Hua Wei
口試委員:余岳仲陳洋元姚永德
口試委員(外文):Yeuh-Chung YuYang-Yuan ChenYeong-Der Yao
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:極性/非極性氧化鋅奈米柱、水熱法、蕭特基接觸、紫外光感測器
外文關鍵詞:polar and nonpolar ZnOnanaorodsHydrothermal methodUV Photodetector
相關次數:
  • 被引用被引用:4
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文分別利用極性與非極性氧化鋅薄膜做為緩衝層,再藉由水熱法合成極性與非極性的氧化鋅奈米柱結構。首先我們先用電漿輔助化學氣相沉積系統在p-Si (100)基板上分別沉積極性與非極性之氧化鋅薄膜,接著以這兩種氧化鋅薄膜做為水熱法合成奈米柱結構的緩衝層,藉由表面電荷排列的不同影響其垂直與水平的排列方式,在此部分將會探討在水熱法中不同的成長溫度、水溶液濃度的變化以及成長時間對其結構之影響。從研究結果中顯示,在溫度90 OC、水溶液濃度0.05 莫爾及合成時間3小時的條件下能夠成長出垂直陣列的極性氧化鋅奈米柱;在溫度80 OC、水溶液濃度0.05 莫爾及合成時間1小時的條件下能夠成長出水平的非極性氧化鋅奈米柱。本研究使用白金與導電銀膠作為電極材料製作紫外光感測器,經由感測結果分析以白金電極所製備出的感測器有最佳的靈敏度,極性的奈米柱感測器響應時間由4.37秒縮短至1.81秒,回復時間減短至4.87秒;非極性的奈米柱感測器響應時間由0.141秒縮短至0.125秒,回復時間由0.125縮短至0.11秒,由以上的量測我們能得知奈米柱結構能提升感測器的靈敏度,其中更以非極性氧化鋅奈米柱感測器最佳,擁有良好快速的響應與恢復時間。
In this study, polar and nonpolar ZnO thin film were used to be a buffer layer to synthesize the polar and nonpolar ZnO nanaorods for UV photodetector sensing layer. First, polar and nonpolar thin films were deposited onto p-Si (100) substrate using Plasma Enhanced Chemical Vapor Deposition system. Second, the two different as-prepared thin films was used to synthesize the polar and nonpolar ZnO nanaorods as buffer layer by a simple hydrothermal method. In this part we investigated the influence of different temperature, mole concentration of aqueous solution and synthesized time. As the result, we successfully synthesized the vertical polar ZnO nanorods at 90 oC, 0.05 Mole in 3 h and horizontal nonpolar ZnO nanorods at 80 oC, 0.05 Mole in 1 h. Finally, we used two different metal materials as electrode to fabricate horizontal structures of metal-semiconductor-metal (MSM) with schottky contact behavior. The interdigital Pt electrodes were preparing by sputtering and lithography techniques, and colloidal silver electrodes were directly coating onto sample, respectively. As the result, the performance of ZnO-based photodetector with interdigital Pt electrodes is better than silver electrodes, it is showing the good reproducibility and stability after 5times switching of UV illumination. Moreover, the sensitivity was enhanced after synthesized the nanorods structure on the polar/nonpolar ZnO buffer layer. For ZnO-based photodetector with polar nanorod structure, the response time decreased from 4.37 sec to 1.81 sec and the recovery time decreased to 4.87 sec. On the other hand, in the case of ZnO-based photodetector with nonpolar nanorod structure, the response time decreased from 0.141 sec to 0.125 sec and the recovery time decreased from 0.125 sec to 0.11 sec. According to the results, the nonpolar ZnO nanorods photodetector exhibit a good sensitivity with ultra-fast response and recovery time.
目錄
中文摘要 i
ABSTRACT ii
致謝 iv
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
第二章 文獻回顧與基礎理論 5
2.1 氧化鋅介紹 5
2.1.1 氧化鋅晶體結構與特性 6
2.1.2 氧化鋅之極性面 7
2.1.3 氧化鋅之非極性面 8
2.2 氧化鋅相圖 14
2.3 氧化鋅之導電性 15
2.4 氧化鋅缺陷 16
2.5 氧化鋅發光機制 19
2.6 奈米材料 25
2.6.1 量子侷限效應(quantum confinement effect) 26
2.6.2 表面效應(surface effect) 26
2.6.3 尺寸效應(size effect) 26
2.7 一維奈米結構之成長機制 28
2.8 水熱法合成一維奈米結構 30
2.9 電漿輔助式化學氣相沉積系統 34
2.10 氧化鋅奈米感測元件之應用 35
2.10.1 紫外光感測器響應機制 35
第三章 實驗方法及步驟 38
3.1 實驗流程設計與設備介紹 38
3.1.1 實驗大綱 38
3.2 實驗設備 39
3.2.1 電漿輔助化學氣相沉積法(Plasma Enhanced Chemical Vapor deposition, PECVD) 39
3.3 實驗材料與藥品 41
3.3.1 反應氣體 41
3.3.2 實驗藥品 41
3.3.3 基板原料 41
3.4 電漿輔助化學氣相沉積法製備氧化鋅薄膜緩衝層 41
3.4.1基板準備 41
3.4.2鍍膜參數及步驟 42
3.5 水熱法一維氧化鋅奈米柱製備 43
3.6 特性分析儀器介紹 44
3.6.1 X-ray繞射晶體結構分析儀(X-ray Diffractometer, XRD) 44
3.6.2 場發射掃描式電子顯微鏡(FE-SEM) 46
3.6.3 光致螢光光譜儀(PL) 48
3.6.4 穿透式電子顯微鏡分析 (Transmission Electron Microscope, TEM) 50
3.7電極製作 51
3.7.1 銀膠電極製作 51
3.7.2 白金電極製作 51
3.7.3 ZnO/Si 結構上製作指叉狀電極 53
3.8 紫外光檢測器的光源與量測 57
3.8.1 紫外光光源 57
3.8.2 電性量測 57
第四章 實驗結果與討論 58
4.1 溫度對於極性與非極性氧化鋅薄膜沉積之影響 58
4.1.1 極性與非極性氧化鋅薄膜之沉積參數 58
4.1.2 XRD繞射分析 59
4.1.3 SEM表面形貌分析 61
4.1.4極性與非極性氧化鋅薄膜之PL光學分析 63
4.2一維極性氧化鋅奈米柱結構之合成 65
4.2.1 溫度對於極性氧化鋅奈米柱之影響 65
4.2.2 XRD繞射分析 66
4.2.3 SEM表面分析 68
4.2.4 極性氧化鋅奈米線之深寬比分析 70
4.2.5 極性氧化鋅奈米結構之PL圖 72
4.2.6 濃度對於極性氧化鋅奈米柱之影響 74
4.2.7 XRD晶體結構分析 74
4.2.8 SEM表面形貌分析 76
4.2.9 極性氧化鋅奈米柱之PL圖 79
4.2.10 成長時間對氧化鋅奈米柱之影響 81
4.2.11 XRD晶體結構分析 81
4.2.12 SEM表面分析 83
4.2.13 極性氧化鋅奈米柱之PL圖 86
4.3 非極性氧化鋅奈米柱合成 87
4.3.1溫度對於非極性氧化鋅奈米柱之影響 87
4.3.2 XRD晶體結構分析 88
4.3.3 SEM表面分析 90
4.3.4非極性氧化鋅奈米柱之PL圖 92
4.3.5 濃度對於非極性氧化鋅奈米柱之影響 93
4.3.6 XRD晶體結構分析 93
4.3.7 SEM表面分析 95
4.3.8非極性氧化鋅奈米柱之PL圖 98
4.4 極性與非極性氧化鋅奈米柱晶體成長 99
4.5 紫外光感測特性分析 101
4.5.1白金電極於氧化鋅奈米柱之影響 102
4.5.2極性與非極性氧化鋅奈米柱感測器之影響 105
4.5.3導電銀膠對於氧化鋅奈米柱之影響 109
4.5.4極性與非極性氧化鋅奈米柱感測器之影響 111
第五章 結論 114
參考文獻 115
作者簡介 131
參考文獻
[1]C. Socu, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” NANO LETTERS, vol. 7, 2007, pp.1003-1009.
[2]J. Herran, I. Fernandez, E. Ochoteco, G. Cabanero and H. Grande, “The role of water vapor in ZnO nanostructure for humidity sensing at room temperature,” Sensors and Actuators B : Chemical, vol. 198, 2014, pp. 239-242.
[3]C. L. Hsu, K. C. Chen, T. Y. Tsai and T. J. Hsueh, “Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires,” Sensors and Actuators B : Chemical, vol. 182, 2013, pp. 190-196.
[4]Sunita Gulia and Rita Kakkar, “ZnO quantum dots for biomedical applications,” ADVANCED MATERIALS Letters, vol. 12, 2013, pp. 876-887.
[5]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Applied Physics Letters, vol. 70, 1997, pp. 2230-2232.
[6]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa. “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin film,” Applied Physics Letters, vol. 72, 1998, pp. 3270-3272.
[7]X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerature and its potential as a self-powered active gas sensor,” Nanotechnology, vol. 24, 2013, pp. 22501-22507.

[8]S. Rackauskas, K. Mustonen, T. Jarvinen, M. Mattila, O. Klimova, H. Jiang, O. Tolochko, H. Lipsanen, Esko I. Kauppinen and Albert G. Nasibulim, “Synthesis of ZnO tetrapods for flexible and transparent UV sensors,” Nanotechnology, vol. 23, 2012, pp. 095502-095509.
[9]F. Fang, J. Futter, A. Markwitz and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology, vol. 20, 2009, pp. 245502-245509.
[10]C. L. Hsu, K. C. Chen, T. Y. Tsai and T. J. Hsueh, “Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires,” Sensors and Actuators B : Chemical, vol. 182, 2013, pp. 190-196.
[11]J. Liu, R. Lu, G. Xu, J. Wu, P. Thapa and D. Moore, “Development of Seedless Floating Growth Process in Solution for Synthesis of Crystalline ZnO Micro/Nanowire Arrays on Graphene: Towards High-Performance Nanohybrid Ultraviolet Photofetectors,” ADVANCED FUNCTIONAL MATERIALS, vol. 23, 2013, pp. 4941-4948.
[12]W. Wang, J. Qi, Q, Wang, Y. Huang, Q. Liao and Y. Zhang, “Single ZnO nanotetrapod-based sensors for monitoring localized UV irradiaion,” Nanoscle, vol. 5, 2013, pp. 5981-5985.
[13]J. Zhou, Y. Gu, Y. Hu, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla and Z. L. Wang, “Gigantic enchancedment in represent and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Applied Physics Letters, vol. 94, 2009, pp. 191103-191105.
[14]Z. L. Wang, “Nanostructures of zinc oxide,” Materialstoday, vol. 7, 2004, pp. 26-33.
[15]C. L. Kuo, R. C. Wang, C. P .Liu and J. L. Hung, “Composition fluctuation induced growth of Al:ZnO rectangular nanaorod arrays,” Nanotechnology, vol. 19, 2008, pp. 035605-03569.
[16]R. C. Wang, C. P. Liu, J. L. Huang and S. J. Chen, “Growth and field-emission properties of single-crystalline conic ZnO nanotubes,” Nanotechnology, vol. 17, 2006, pp. 753-757.
[17]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO hexagonal arrays of nanowires grown on nanorods,” Applied Physics Letters, vol. 86, 2005, pp. 251104-251106.
[18]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO symmetric nanosheets integrated with nanowalls,” Applied Physics Letters, vol. 87, 2005, pp. 053103-053105.
[19]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO hexagonal microboxes enclosed only by {0001} facets with epitaxial,” Applied Physics Letters, vol. 89, 2006, pp. 173121-173123.
[20]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO nanopenciles: Efficient field emitters ,” Applied Physics Letters, vol. 87, 2005, pp. 013110-013112.
[21]B. Bercu, W. Geng, O. Simonetti, S. Kostcheev, C. Sartel, V. Sallet, G. Lerondel, M. Molinari, L. Giraudet and C. Coureau, “Characterizations of Ohmic and Schottky-behaving contacts of single nanowire,” Nanotechnology, vol. 24, 2013, pp. 415202-415208.
[22]G. Malandrino, M. Blandino, M. E. Fragala, M. Losurdo and G. Bruno, “Relationship between Nanostructure and Optical Properties of ZnO Thin Films,” Journal of Physical Chemistry C, vol. 112, 2008, pp. 9595-9599.
[23]M. C. Jeong, B. Y. Oh, W. Lee and J. M. Myoung, “Comparative study on growth characteristics og ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD),” Journal of Crystal Growth, vol. 268, 2004, pp. 149-154.
[24]S. Hasenohrl, P. Elias, J. Soltys, R. Stoklas, A. D. Laurencikova and J. Novak, “Zinc-doped gallium phosphide nanowires for photovoltaic structures,” Applied Surface Science, vol. 269, 2013, pp. 72-76.
[25]J. I. Sohn, W. K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, Jamie H. Warner, S. Cha and J. M. Kim, “Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity,” SCIENTIFIC REPORTS, vol. 4, 2014, pp. 5680-5686.
[26]J. Cho, N. Salleh, C. Blanco, S. Yang, C. J. Lee, Y. W. Kim, J. Kim and J. Liu, “Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrate,” Nanoscle, vol. 6, 2014, pp. 3861-3867.
[27]H. He, Q. Yang, C. Liu, L. Sun and Z. Ye, “Size-Dependent surface Effect on Photoluminescence in ZnO Nanorods,” Journal of Physical Chemistry C, vol. 115, pp. 58-64.
[28]S. Y. Pung, K. L. Choy, X. Hou and C. Shan, “Preferential growth of ZnO thin films by the atomic layer deposition techniqe,” Nanotechnology, vol. 19, 2008, pp. 435609-435616.
[29]J. T. Jang, H. Ryu and W. J. Lee, “Effect of ALD surface treatment on structural and optical properties of ZnO nanorods,” Applied Surface Science, vol. 276, 2013, pp. 558-862.
[30]Ashley R. Bielinski, E. Kazyak, Christan M. Schleputz, H. J. Jung, Kevin N. Wood and Neil P. Dasgupta, “Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrate Using Atmoic Layer Deposition Seeding,” Chemistry of Materials, vol. 27, 2015, pp. 4799-4807.
[31]L. M. Li, Z. F. Du, J. Zhang and T. H. Wang, “Ultralow threshold field emission from ZnO nanorod arrays grown on ZnO film at low temperature,” Nanotechnology, vol 18, 2007, pp. 355606-355610.
[32]S. Li, X. Zhang, B. Yan and T. Yu, “Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method,” Nanotechnology, vol. 20, 2009, pp. 495604-495612.
[33]L. T. Chang, C. Y. Wang, J. Tang, T. Nie, W. Jiang, C. S. Arafin, L. He, M. Afsal, L. Juann Chen and Kang L. War, “Electric-Field Control of Ferromagnetism in Mn-Doped ZnO Nanowires,” NANO LETTERS, vol. 14, 2014, pp. 1823-1829.
[34]J. Tzou, K. F. Chien, H. Y. Lai, J. T. Ku, L. Lee and W. C. Fan, “The study of self-assembled ZnO nanorods grown on Si(111) by plasma-assisted molecular beam epitaxy,” Journal of Crystal Growth, vol. 378, 2013, pp. 466-469.
[35]D. Bekermann, A. Gasparotto, D. Barreca, L. Bovo, A. Devi, Roland A. Fischer, Oleg I. Lebedev, C. Maccato, E. Tondello and G. V. Tendeloo, “Highly Oriented ZnO Nanorod Arrays by Novel Plasma Chemical Vapor Deposition Process,” Crystal Growth and Design, vol. 10, 2010, pp. 2011-2018.
[36]D. Barreca, D. Bekermann, E. Comini, A. Devi, Roland A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri and E. Tondello, “1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases,” Sensors and Actuators B : Chemical, vol. 149, 2010, pp. 1-7.
[37]Y. Cai, X. Li, P. Sun, B. Wang, F. Liu, P. Cheng, S. Du and G. Lu, “Ordered ZnO nanorod array film driven by ultrasonic spray pyrolysis and its optical properties ,” Materials Letters, vol. 112, 2013, pp. 36-38.
[38]Lixin Zhang and Hanchen Huang, “Structural transformation of ZnO nanostructures,” Applied Physics Letters, vol. 90, 2007, pp. 023115-1 - 023115-3.
[39]G Perillat-Merceroz, R Thierry, P-H Jouneau, P Ferret and G Feuillet, “Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire,” Nnaotechnology, vol. 23, 2012, pp.125702-125712.
[40]Y. Sun, D. Jason Riley and Michael N. R. Ashfold, “Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates,” Journal of Physical Chemistry B, vol. 110, 2006, pp. 15186-15192.
[41]C. Tang, Michelle J. S. Spencer and Amanda S. Barnard, “Activity of ZnO polar surfaces: an insight from surface energies,” Phys. Chem. Chem. Phys, vol. 16, 2014, pp. 22139-22144.
[42]Dulub, U. Diebold and G. Kresse, “Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn,” Physical Review Letters, vol. 90, 2003, pp. 016102-1 – 016102-4.
[43]R. Wahl, Jeppe V. Lauritsen, F. Besenbacher and G. Kresse, “Stabilization mechanism for the polar ZnO (000-1)-O surface,” PHYSICAL REVIEW B, vol. 87, 2013, pp. 085313-085325.
[44]Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton and N. M. Harrison, “Stability of Polar Oxide Surfaces,” Physical Review Letters, vol. 86, 2001, pp. 3811-3814.
[45]H. Chao and D. H. Wei, “Growth of nonpolar ZnO thin films with different working pressure by plasma enchanced chemical vapor deposition,” Japanese Journal of Applied Physics, vol. 53, 2014, pp. 11RA05-1-5.
[46]Y. Li, Y. Z. Zhang, H. P. He, Z. Z. Ye, J. Jiang, J. G. Lu and J. Y. Hung, “Epitaxial growth of non-polar m-plane ZnO thin films by pulsed laser deposition,” Mater. Res. Bull, vol. 47, 2012, pp. 2235-2238.
[47]M. Babar Shahzad, H. Lu, P. Wang and Y. Qi, “A novel approach for controlled oriented growth of non-polar m-plane ZnO via low temperature chemical solution route,” CrystEngComm, vol. 14, 2012, pp. 7123-7126.
[48]Mitch M. C. Chou, D. R. Hang, C. Chen and Y. H. Liao, “Epitaxy growth of nonpolar m-plane ZnO (10-10) on large size LiGaO2 (100) substrate,” Thin Solid Films, vol. 519, 2011, pp.3627-3631.
[49]E. Cagin, J. Yang, W. Wang, J. D. Philips, S. K. Hong, J. W. Lee and J. Y. Lee, “Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy,” Appl. Phys. Lett, vol. 92. 2008, pp. 233505-233507.
[50]Y. T. Ho, W. L. Wang, C. Y. Peng, M. H. Liang, J. S. Tian, C. W. Lin and L. Chang, “Growth of nonpolar (11-20) ZnO films on LaAlo3 (001) substrate,” Appl. Phys. Lett, vol. 93. 2008, pp. 121911-121913.
[51]Y. C. Liang, “Growth and characterization of nonpolar a-plane ZnO films on perovskite oxides with thin homointerlayer,” Journal of Alloys and Compounds, vol. 508, 2010, pp. 158-161.
[52]C. H. Chao, P. W. Chi and D. H. Wei, “Investigatons on the Crystallographic Orientation Induced Surface Morphology Evolution of ZnO Thin Films and Their Wettalibity and Conductivity,” J. Phys. Chem. C, vol. 120, 2016, pp. 8210-8219.
[53]G. Zhu, R. Yang, S. Wang and Z. L. Wang, “Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array,” Nano Lett, vol. 10, 2010, pp. 3151-3155.
[54]R. Gao, Z. Liang, J. Tian, Q. Zhang, L. Wang and G. Cao, “A ZnO nanorod layer with a superior light-scattering effect for dye-sensitized solar cells,” RSC Adv, vol. 3, 2013, pp. 18537-18543.
[55]Mohammad R. Alenezi, Abdullah S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliatis, S. J. Henley and S. R. P. Silva, “Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensor,” J. Phys. Chem. C, 2013, vol. 117, pp. 17850-17858.
[56]M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama and R. Ghosh, “Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal Technique,” J. Phys. Chem. C, 2016, vol. 120, pp. 3019-3025.
[57]S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl and X. Wang, “High-Performance lntegrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrate,” Adv. Funct. Mater, 2011, vol. 21, pp. 4464-4469.
[58]F. Fang, J. Futter, A. Markwitz and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharged method,” Nanotechnology, 2009, vol. 20, pp. 245502-245509.
[59]X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu, “Effect of aspect ratio anf surface defect on the photocatalytic activity of ZnO nanorods,” SCIENTIFIC REPORTS, 2014, vol. 4, pp. 4596-4603.
[60]E. S. Jang, J. H. Won, S. J. Hwang and J. H. Choy, “Fine Tuning of the Face Orientation of ZnO Crystal to Optimize Their Photocatalytic Activity,” Adv. Funct. Mater, 2006, vol. 18, pp. 3309-3312.
[61]Z. F. Shi, Y. T. Zhang, X. J. Cui, S. W. Zhuang, B. Wu, J. Y. Jiang, X. W. Chu, X. Dong, B. L. Zhang and G. T. Du, “Epitaxial growth of vertically aligned ZnO nanowires for bidirectional direct-current driven light-emitting diodes application,” CrystEngComm, 2015, vol. 17, pp. 40-49.
[62]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, 2005, pp. 041301-1 - 041301-103.
[63]J . G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO:Al films,” Journal of Applied Physics, vol. 101, 2007, pp. 083705-1 - 083705-7.
[64]C. Jagadish and S. Pearton, “Thin Films and Nanostructures: Processing, Properties, and Applications,” New York: Elsevier, 2006, pp. 3.
[65]L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu and C. Liu, “Size Dependence of Gas Sensitivity of ZnO Nanorods,” Journal of Physical Chemistry C, vol. 111, 2007, pp. 1900-1903.
[66]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett, vol. 7, 2007, PP. 1003-1009.
[67]Q. Xu, D. Ju, Z. Zhang, S. Yuan, J. Zhang, H. Xu and B. Cao, “Near room-temperature trimethylamine sensor constructed with CuO/ZnO P-N heterostructural nanorods directly on flat electrode,” Sensors and Actuators B, 2016, vol. 225, pp.16-23.
[68]Y. M. Chiang, D. BirnieⅢ and W. D. Kingery, Physical Ceramics, New York: John Wiley, 1997.
[69]L. Schmidt-Mende, J. L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Materials today, vol. 10, 2007, pp. 40-48.
[70]H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee , “Variation of Light Emitting Properties of ZnO Thin Films Depending on Post-annealing Temperature,”Materials Science and Engineering B, vol.102, 2003, pp.313-316.
[71]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders,” Journal of Applied Physics, vol. 79, 1996, pp. 7983-7990.
[72]謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二卷,第二期,2005,第28-39頁。
[73]X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y Zhang, Y. M Lu, D. Z. Shen, W. Xu, X. W. Fan and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” Journal of Luminescence, vol. 99, 2002, pp. 149–154.
[74]J. Anderson, C. G. Van de Walle, “Oxygen vacancies in ZnO,” Applied Physics Letters, vol. 87, 2005, pp. 1-3.
[75]B. X. Lin, Z.X. Fu and Y. B. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Applied Physics Letters, vol. 79, 2001, pp. 943-945.
[76]E. G. Bylander, “Surface Effect on the Low-energy Cathodoluminescence of Zinc Oxide,” Journal of Applied Physics, vol. 49, 1978, pp. 1188-1195.
[77]陳致宏,利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究,碩士論文,義守大學,高雄,2008。
[78]張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川, 電漿源原理與應用之介紹, 物理雙月刊,第二十八卷,第二期,2006。
[79]Hong Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall, 2001.
[80]趙彥錚,化學氣相沉積氧化鋅磊晶薄膜於YSZ基板之研究,碩士論文,交通大學,新竹,2005。
[81]劉陵崗、李進興、張火成、薛中興、蔣作群、賴紹榮、陳振漢、朱光馨、徐曼珈、王盛時,實用奈米科技,2005。
[82]P. Alivisatos, “Semiconductor Cluters, Nanocrystals, and Quantum Dots,” Science, vol.271, pp.933-937.
[83]馬遠榮,低微奈米材料,科學發展,第382期,2004。
[84]R. Rossetti, S. Nakahara and L. E. Brus, “Quantum size effects in the redox potentials, resonace Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys, 1983, vol.79, pp.1086-1088.
[85]C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen. J. J.Wu, H. W. I. Wen and W. F. Pong, “Anomalous blueshift emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Applied Physics Letters, vol. 88, 2006, pp. 241905-1-241905-3
[86]蔡信行,孫光中,奈米科技導論-基本原理及應用 (第二版),2004。
[87]Z. Li, Q. Sun, X. D. Yao, Z. H. Zhu and G. Q, Lu, “Semiconductor nanowires fir thermoelectrics,” J. Mater. Chem, 2012, vol. 22, pp. 22821-22831
[88]R. S. Wagner and W. C. Ellis, “VAPOR-LIOUID SOLID MECHANISM OF SINGLE CRYSTAL GROWTH,” Applied Physics Letters, vol.4, 1964, p.89-
[89]Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chemistry of Materials, vol. 12, 2000, pp. 605-607.
[90]P. Yang and C. M. Lieber, “Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities,” Science, vol. 273, Science, pp. 1836-1840.
[91]Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Applied Physics Letters, vol. 76, 2000, pp. 2011-2013.
[92]Y. Hao, G. Meng, C. Ye and L. Zhang, “Reversible blue light emission from self-assembled silica nanocords,” Applied Physics Letters, Vol. 87, 2005, p. 033106(3).
[93]E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, 1997, pp. 1971-1975.
[94]T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbson and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, 1995, pp. 1791-1794.
[95]Z. Wang, X. Liu, J. Gong, H. Huan, S. Gu and S. Yang, ”Epitaxial Growth of ZnO Nanowires on ZnS Nanobelts by Metal Organic Chemical Vapor Deposition” Crystal Growth and Design, 2008, vol. 8, pp. 3911-3913
[96]B. Bercu, W. Geng, O. Simonetti, S. Kostcheev, C. Sartel, V. Sallet, G. Lerondel, M. Mo;inari, L. Giraudet and C. Couteau, “Characterizations of Ohmic and Schottky-behaving contacts of single ZnO nanowire,” Nanotechnology, 2013, vol. 24, p. 415202(7).
[97]K. Black, A. C. Jones, I. Alexandrou, P. N. Heys and P. R. Chalker, “The optical properties of vertically aligned ZnO nanowires deposited using a dimethlzinc adduct,” Nanotechnology, 2010, vol. 21, p. 045701(5).
[98]K. Subannajui, F. Guder, J. Danhof, A. Menzel, Y. Yang, L. Kirste, C. Wang, V. Cimalla, U. Schwarz and M. Zacharias, “An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrate by atomic layer deposition,” Nanotechnology, 2010, vol. 23, p. 235607(7).
[99]V. A. Kale, R. Prabhakar, S. S. Pramana, M. Rao, C. H. Sow, K. B. Jinesh and S. G. Mhaisalkar, “Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays,” Physical Chemistry Chemical Physics, vol. 14, 2014, pp. 4614-4619.
[100]M. Zhong, Y. Sato, M. Kurniawan, A. Apostoluk, B. Masenelli, E. Maeda, Y. Ikuhara and J. J. Delaunay, “ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications,” Nanotechnology, 2012, vol. 23, p. 495602(10).
[101]P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” CHEMISTRY OF MATERIALS, vol. 16, 2004, pp.5133-5137.
[102]L. Lu, J. Chen and W. Wang, “Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improverment of photovoltaic perfomance,” Nanoscale Research Letters, vol. 7, 2012 p. 293(6).
[103]M. M. Montero, A. Borras, Z. Saghi, J. P. Espinos, A. Barranco, J. Cotrino and A. R. G. Elipe, “Vertical and tilted Ag-NPs@ZnO nanorods by plasma-enchanced chemical vapor deposition”, Nanotechnology, vol. 23, 2012, p. 255303(12).
[104]X. Liu, X. Wu, H. Cao and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enchanced chemical vapor deposition,” JOURNAL OG APPLIED PHYSICS, vol. 95, 2004, pp. 3141-3147.
[105]Umar, B. K. Kim, J. J. Kim and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation”, Nanotechnology, vol. 18, 2007, p. 175606(7).
[106]H. B. Lu, H. Li, L. Liao, Y. Tian. M. Shuai, J. C. Li, M. F. Hu, Q. Fu and B. P. Zhu, “Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires,” Nanotechnology, vol. 19, 2008, p. 045605(7).
[107]L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, ADVANCED MATERIALS, vol. 15, 2003 pp. 464-466.
[108]N. J. Nicholas, G. V. Franks and W. A. Ducker, “The mechanism for hydrothermal growth of zinc oxide”, CrystEngComm, vol. 14, 2012, pp. 1232-1240.
[109]S. B.aruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures”, SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, vol. 10, 2009, p. 013001(18).
[110]S. L. Cheng, J. H. Syu, S. Y. Liao, C. F. Lin and P. Y. Yeh, “Growth Kinetics and wettability conversion of vertically-aligned ZnO nanowires synthesized by a hydrothermal method”, RSC Advances, vol. 5, 2045, pp. 67752-67758.
[111]M. C. Akgun, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt”, Journal of Materials Research, vol. 27, 2012, pp.1445-1451.
[112]M. Wang, C. H. Ye, Y. Zhang, H. X. Wang, X. Y. Zeng and L. D. Zhang, “Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueous method”, Journal of Materials Science: Materials in Electronics, vol. 19, 2008, pp.211-216.
[113]J. Song and S. Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods”, The JOURNAL OF PHYSICAL CHEMISTRY C, vol. 111, 2007, pp. 596-600.
[114]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds”, NANO LETTERS, vol. 5, 2005, pp.1231-1236.
[115]H. Zhang, J. Lu, X. Yang, Z. Ye, J. Hung, B. Lu, L. Hu, Y. Li, Y. Zhang and D. Li, “Inclined and ordered ZnO nanowire arrays developed on non-polar ZnO Seed layer films”, CrystEngComm, vol. 14, 2012, pp. 4501-4506.
[116]M. R. Alenezi, S. J. Henley, N. G. Emerson and S. Ravi P. Silva, “From 1D and 2D nanostructures to 3D hierarchical structures with enhanced gas sensing properties ”, Nanoscle, vol. 6, 2014, pp. 235-247.
[117]R. Wahab, Y. A. Kim and H. S. Shin, “Synthesis, Characterization and Effect of pH Variation on Zinc Oxide Nanostructures”, Materials Transactions, vol. 50, 2009, PP. 2092-2097.
[118]R. Das, A. Kumar, Y. Kumar, S. Sen and P. M. Shirage, “Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method”, RSC Advances, vol. 5, 2015, pp. 60365-60372.
[119]柯賢文,表面與薄膜處理技術,2008。
[120]G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed ”, Applied. Physics. Letters, vol. 99, 2011, pp. 203105-1-203105-3.
[121]A. Afal, S. Coskun and H. E. Unalan, “All solution proceed, nanowire enhanced ultraviolet photodetectors”, Applied. Physics. Letters, vol. 102, 2013, pp. 043503-1-043503-5.
[122]S. Rackauskas, K. Mustonen, T. Jarvinen, M. Mattila, O. Klimova, H. Jiang, O. Tolochko, H. Lipsanen, E. I. Kauppinen and A. G. Nasibulin, “Synthesis of ZnO tetrapods for flexible and transparent UV sensors,” Nanotechnology, vol. 23, 2012, p. 095502(7).
[123]X. Liu, X. H. Wu, H. Cao and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition , ” Journal of Applied Physics, vol. 95, 2004, pp. 3141-1 – 3141-7.
[124]楊志信,「一致磁化轉動模型之磁化曲線特性」,中華民國磁性技術協會會刊,第二十八卷,第四期,2006,第692頁。
[125]J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Applied Physics Letters, vol. 88, 2006, pp. 133114-1 – 133114-3.
[126]S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim and G. T. Kim, “Photoresponse of sol-gel-synthesized ZnO nanorods,” Applied Physics Letters, vol. 84, 2004, pp. 5022-1 – 5022-3.
[127]M. C. Jeong, B. Y. Oh, W. Lee and J. M. Myoung, “Optoelectronic properties of three-dimensional ZnO hybrid structure,” Applied Physics Letters, vol. 86, 2005, pp. 103105-1 – 103105-3.
[128]Y. Li, F. D. Valle, M. Simonnet, I. Yamada and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Applied Physics Letters, vol. 94, 2009, pp. 023110-1 – 023110-3.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top