參考文獻
[1]C. Socu, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” NANO LETTERS, vol. 7, 2007, pp.1003-1009.
[2]J. Herran, I. Fernandez, E. Ochoteco, G. Cabanero and H. Grande, “The role of water vapor in ZnO nanostructure for humidity sensing at room temperature,” Sensors and Actuators B : Chemical, vol. 198, 2014, pp. 239-242.
[3]C. L. Hsu, K. C. Chen, T. Y. Tsai and T. J. Hsueh, “Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires,” Sensors and Actuators B : Chemical, vol. 182, 2013, pp. 190-196.
[4]Sunita Gulia and Rita Kakkar, “ZnO quantum dots for biomedical applications,” ADVANCED MATERIALS Letters, vol. 12, 2013, pp. 876-887.
[5]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Applied Physics Letters, vol. 70, 1997, pp. 2230-2232.
[6]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa. “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin film,” Applied Physics Letters, vol. 72, 1998, pp. 3270-3272.
[7]X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerature and its potential as a self-powered active gas sensor,” Nanotechnology, vol. 24, 2013, pp. 22501-22507.
[8]S. Rackauskas, K. Mustonen, T. Jarvinen, M. Mattila, O. Klimova, H. Jiang, O. Tolochko, H. Lipsanen, Esko I. Kauppinen and Albert G. Nasibulim, “Synthesis of ZnO tetrapods for flexible and transparent UV sensors,” Nanotechnology, vol. 23, 2012, pp. 095502-095509.
[9]F. Fang, J. Futter, A. Markwitz and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology, vol. 20, 2009, pp. 245502-245509.
[10]C. L. Hsu, K. C. Chen, T. Y. Tsai and T. J. Hsueh, “Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires,” Sensors and Actuators B : Chemical, vol. 182, 2013, pp. 190-196.
[11]J. Liu, R. Lu, G. Xu, J. Wu, P. Thapa and D. Moore, “Development of Seedless Floating Growth Process in Solution for Synthesis of Crystalline ZnO Micro/Nanowire Arrays on Graphene: Towards High-Performance Nanohybrid Ultraviolet Photofetectors,” ADVANCED FUNCTIONAL MATERIALS, vol. 23, 2013, pp. 4941-4948.
[12]W. Wang, J. Qi, Q, Wang, Y. Huang, Q. Liao and Y. Zhang, “Single ZnO nanotetrapod-based sensors for monitoring localized UV irradiaion,” Nanoscle, vol. 5, 2013, pp. 5981-5985.
[13]J. Zhou, Y. Gu, Y. Hu, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla and Z. L. Wang, “Gigantic enchancedment in represent and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Applied Physics Letters, vol. 94, 2009, pp. 191103-191105.
[14]Z. L. Wang, “Nanostructures of zinc oxide,” Materialstoday, vol. 7, 2004, pp. 26-33.
[15]C. L. Kuo, R. C. Wang, C. P .Liu and J. L. Hung, “Composition fluctuation induced growth of Al:ZnO rectangular nanaorod arrays,” Nanotechnology, vol. 19, 2008, pp. 035605-03569.
[16]R. C. Wang, C. P. Liu, J. L. Huang and S. J. Chen, “Growth and field-emission properties of single-crystalline conic ZnO nanotubes,” Nanotechnology, vol. 17, 2006, pp. 753-757.
[17]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO hexagonal arrays of nanowires grown on nanorods,” Applied Physics Letters, vol. 86, 2005, pp. 251104-251106.
[18]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO symmetric nanosheets integrated with nanowalls,” Applied Physics Letters, vol. 87, 2005, pp. 053103-053105.
[19]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO hexagonal microboxes enclosed only by {0001} facets with epitaxial,” Applied Physics Letters, vol. 89, 2006, pp. 173121-173123.
[20]R. C. Wang, C. P. Liu and J. L. Hung, “ZnO nanopenciles: Efficient field emitters ,” Applied Physics Letters, vol. 87, 2005, pp. 013110-013112.
[21]B. Bercu, W. Geng, O. Simonetti, S. Kostcheev, C. Sartel, V. Sallet, G. Lerondel, M. Molinari, L. Giraudet and C. Coureau, “Characterizations of Ohmic and Schottky-behaving contacts of single nanowire,” Nanotechnology, vol. 24, 2013, pp. 415202-415208.
[22]G. Malandrino, M. Blandino, M. E. Fragala, M. Losurdo and G. Bruno, “Relationship between Nanostructure and Optical Properties of ZnO Thin Films,” Journal of Physical Chemistry C, vol. 112, 2008, pp. 9595-9599.
[23]M. C. Jeong, B. Y. Oh, W. Lee and J. M. Myoung, “Comparative study on growth characteristics og ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD),” Journal of Crystal Growth, vol. 268, 2004, pp. 149-154.
[24]S. Hasenohrl, P. Elias, J. Soltys, R. Stoklas, A. D. Laurencikova and J. Novak, “Zinc-doped gallium phosphide nanowires for photovoltaic structures,” Applied Surface Science, vol. 269, 2013, pp. 72-76.
[25]J. I. Sohn, W. K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, Jamie H. Warner, S. Cha and J. M. Kim, “Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity,” SCIENTIFIC REPORTS, vol. 4, 2014, pp. 5680-5686.
[26]J. Cho, N. Salleh, C. Blanco, S. Yang, C. J. Lee, Y. W. Kim, J. Kim and J. Liu, “Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrate,” Nanoscle, vol. 6, 2014, pp. 3861-3867.
[27]H. He, Q. Yang, C. Liu, L. Sun and Z. Ye, “Size-Dependent surface Effect on Photoluminescence in ZnO Nanorods,” Journal of Physical Chemistry C, vol. 115, pp. 58-64.
[28]S. Y. Pung, K. L. Choy, X. Hou and C. Shan, “Preferential growth of ZnO thin films by the atomic layer deposition techniqe,” Nanotechnology, vol. 19, 2008, pp. 435609-435616.
[29]J. T. Jang, H. Ryu and W. J. Lee, “Effect of ALD surface treatment on structural and optical properties of ZnO nanorods,” Applied Surface Science, vol. 276, 2013, pp. 558-862.
[30]Ashley R. Bielinski, E. Kazyak, Christan M. Schleputz, H. J. Jung, Kevin N. Wood and Neil P. Dasgupta, “Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrate Using Atmoic Layer Deposition Seeding,” Chemistry of Materials, vol. 27, 2015, pp. 4799-4807.
[31]L. M. Li, Z. F. Du, J. Zhang and T. H. Wang, “Ultralow threshold field emission from ZnO nanorod arrays grown on ZnO film at low temperature,” Nanotechnology, vol 18, 2007, pp. 355606-355610.
[32]S. Li, X. Zhang, B. Yan and T. Yu, “Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method,” Nanotechnology, vol. 20, 2009, pp. 495604-495612.
[33]L. T. Chang, C. Y. Wang, J. Tang, T. Nie, W. Jiang, C. S. Arafin, L. He, M. Afsal, L. Juann Chen and Kang L. War, “Electric-Field Control of Ferromagnetism in Mn-Doped ZnO Nanowires,” NANO LETTERS, vol. 14, 2014, pp. 1823-1829.
[34]J. Tzou, K. F. Chien, H. Y. Lai, J. T. Ku, L. Lee and W. C. Fan, “The study of self-assembled ZnO nanorods grown on Si(111) by plasma-assisted molecular beam epitaxy,” Journal of Crystal Growth, vol. 378, 2013, pp. 466-469.
[35]D. Bekermann, A. Gasparotto, D. Barreca, L. Bovo, A. Devi, Roland A. Fischer, Oleg I. Lebedev, C. Maccato, E. Tondello and G. V. Tendeloo, “Highly Oriented ZnO Nanorod Arrays by Novel Plasma Chemical Vapor Deposition Process,” Crystal Growth and Design, vol. 10, 2010, pp. 2011-2018.
[36]D. Barreca, D. Bekermann, E. Comini, A. Devi, Roland A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri and E. Tondello, “1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases,” Sensors and Actuators B : Chemical, vol. 149, 2010, pp. 1-7.
[37]Y. Cai, X. Li, P. Sun, B. Wang, F. Liu, P. Cheng, S. Du and G. Lu, “Ordered ZnO nanorod array film driven by ultrasonic spray pyrolysis and its optical properties ,” Materials Letters, vol. 112, 2013, pp. 36-38.
[38]Lixin Zhang and Hanchen Huang, “Structural transformation of ZnO nanostructures,” Applied Physics Letters, vol. 90, 2007, pp. 023115-1 - 023115-3.
[39]G Perillat-Merceroz, R Thierry, P-H Jouneau, P Ferret and G Feuillet, “Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire,” Nnaotechnology, vol. 23, 2012, pp.125702-125712.
[40]Y. Sun, D. Jason Riley and Michael N. R. Ashfold, “Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates,” Journal of Physical Chemistry B, vol. 110, 2006, pp. 15186-15192.
[41]C. Tang, Michelle J. S. Spencer and Amanda S. Barnard, “Activity of ZnO polar surfaces: an insight from surface energies,” Phys. Chem. Chem. Phys, vol. 16, 2014, pp. 22139-22144.
[42]Dulub, U. Diebold and G. Kresse, “Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn,” Physical Review Letters, vol. 90, 2003, pp. 016102-1 – 016102-4.
[43]R. Wahl, Jeppe V. Lauritsen, F. Besenbacher and G. Kresse, “Stabilization mechanism for the polar ZnO (000-1)-O surface,” PHYSICAL REVIEW B, vol. 87, 2013, pp. 085313-085325.
[44]Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton and N. M. Harrison, “Stability of Polar Oxide Surfaces,” Physical Review Letters, vol. 86, 2001, pp. 3811-3814.
[45]H. Chao and D. H. Wei, “Growth of nonpolar ZnO thin films with different working pressure by plasma enchanced chemical vapor deposition,” Japanese Journal of Applied Physics, vol. 53, 2014, pp. 11RA05-1-5.
[46]Y. Li, Y. Z. Zhang, H. P. He, Z. Z. Ye, J. Jiang, J. G. Lu and J. Y. Hung, “Epitaxial growth of non-polar m-plane ZnO thin films by pulsed laser deposition,” Mater. Res. Bull, vol. 47, 2012, pp. 2235-2238.
[47]M. Babar Shahzad, H. Lu, P. Wang and Y. Qi, “A novel approach for controlled oriented growth of non-polar m-plane ZnO via low temperature chemical solution route,” CrystEngComm, vol. 14, 2012, pp. 7123-7126.
[48]Mitch M. C. Chou, D. R. Hang, C. Chen and Y. H. Liao, “Epitaxy growth of nonpolar m-plane ZnO (10-10) on large size LiGaO2 (100) substrate,” Thin Solid Films, vol. 519, 2011, pp.3627-3631.
[49]E. Cagin, J. Yang, W. Wang, J. D. Philips, S. K. Hong, J. W. Lee and J. Y. Lee, “Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy,” Appl. Phys. Lett, vol. 92. 2008, pp. 233505-233507.
[50]Y. T. Ho, W. L. Wang, C. Y. Peng, M. H. Liang, J. S. Tian, C. W. Lin and L. Chang, “Growth of nonpolar (11-20) ZnO films on LaAlo3 (001) substrate,” Appl. Phys. Lett, vol. 93. 2008, pp. 121911-121913.
[51]Y. C. Liang, “Growth and characterization of nonpolar a-plane ZnO films on perovskite oxides with thin homointerlayer,” Journal of Alloys and Compounds, vol. 508, 2010, pp. 158-161.
[52]C. H. Chao, P. W. Chi and D. H. Wei, “Investigatons on the Crystallographic Orientation Induced Surface Morphology Evolution of ZnO Thin Films and Their Wettalibity and Conductivity,” J. Phys. Chem. C, vol. 120, 2016, pp. 8210-8219.
[53]G. Zhu, R. Yang, S. Wang and Z. L. Wang, “Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array,” Nano Lett, vol. 10, 2010, pp. 3151-3155.
[54]R. Gao, Z. Liang, J. Tian, Q. Zhang, L. Wang and G. Cao, “A ZnO nanorod layer with a superior light-scattering effect for dye-sensitized solar cells,” RSC Adv, vol. 3, 2013, pp. 18537-18543.
[55]Mohammad R. Alenezi, Abdullah S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliatis, S. J. Henley and S. R. P. Silva, “Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensor,” J. Phys. Chem. C, 2013, vol. 117, pp. 17850-17858.
[56]M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama and R. Ghosh, “Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal Technique,” J. Phys. Chem. C, 2016, vol. 120, pp. 3019-3025.
[57]S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl and X. Wang, “High-Performance lntegrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrate,” Adv. Funct. Mater, 2011, vol. 21, pp. 4464-4469.
[58]F. Fang, J. Futter, A. Markwitz and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharged method,” Nanotechnology, 2009, vol. 20, pp. 245502-245509.
[59]X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu, “Effect of aspect ratio anf surface defect on the photocatalytic activity of ZnO nanorods,” SCIENTIFIC REPORTS, 2014, vol. 4, pp. 4596-4603.
[60]E. S. Jang, J. H. Won, S. J. Hwang and J. H. Choy, “Fine Tuning of the Face Orientation of ZnO Crystal to Optimize Their Photocatalytic Activity,” Adv. Funct. Mater, 2006, vol. 18, pp. 3309-3312.
[61]Z. F. Shi, Y. T. Zhang, X. J. Cui, S. W. Zhuang, B. Wu, J. Y. Jiang, X. W. Chu, X. Dong, B. L. Zhang and G. T. Du, “Epitaxial growth of vertically aligned ZnO nanowires for bidirectional direct-current driven light-emitting diodes application,” CrystEngComm, 2015, vol. 17, pp. 40-49.
[62]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, 2005, pp. 041301-1 - 041301-103.
[63]J . G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He and B. H. Zhao, “Carrier concentration dependence of band gap shift in n-type ZnO:Al films,” Journal of Applied Physics, vol. 101, 2007, pp. 083705-1 - 083705-7.
[64]C. Jagadish and S. Pearton, “Thin Films and Nanostructures: Processing, Properties, and Applications,” New York: Elsevier, 2006, pp. 3.
[65]L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu and C. Liu, “Size Dependence of Gas Sensitivity of ZnO Nanorods,” Journal of Physical Chemistry C, vol. 111, 2007, pp. 1900-1903.
[66]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett, vol. 7, 2007, PP. 1003-1009.
[67]Q. Xu, D. Ju, Z. Zhang, S. Yuan, J. Zhang, H. Xu and B. Cao, “Near room-temperature trimethylamine sensor constructed with CuO/ZnO P-N heterostructural nanorods directly on flat electrode,” Sensors and Actuators B, 2016, vol. 225, pp.16-23.
[68]Y. M. Chiang, D. BirnieⅢ and W. D. Kingery, Physical Ceramics, New York: John Wiley, 1997.
[69]L. Schmidt-Mende, J. L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Materials today, vol. 10, 2007, pp. 40-48.
[70]H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee , “Variation of Light Emitting Properties of ZnO Thin Films Depending on Post-annealing Temperature,”Materials Science and Engineering B, vol.102, 2003, pp.313-316.
[71]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders,” Journal of Applied Physics, vol. 79, 1996, pp. 7983-7990.
[72]謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二卷,第二期,2005,第28-39頁。
[73]X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y Zhang, Y. M Lu, D. Z. Shen, W. Xu, X. W. Fan and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” Journal of Luminescence, vol. 99, 2002, pp. 149–154.
[74]J. Anderson, C. G. Van de Walle, “Oxygen vacancies in ZnO,” Applied Physics Letters, vol. 87, 2005, pp. 1-3.
[75]B. X. Lin, Z.X. Fu and Y. B. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Applied Physics Letters, vol. 79, 2001, pp. 943-945.
[76]E. G. Bylander, “Surface Effect on the Low-energy Cathodoluminescence of Zinc Oxide,” Journal of Applied Physics, vol. 49, 1978, pp. 1188-1195.
[77]陳致宏,利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究,碩士論文,義守大學,高雄,2008。[78]張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川, 電漿源原理與應用之介紹, 物理雙月刊,第二十八卷,第二期,2006。[79]Hong Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall, 2001.
[80]趙彥錚,化學氣相沉積氧化鋅磊晶薄膜於YSZ基板之研究,碩士論文,交通大學,新竹,2005。[81]劉陵崗、李進興、張火成、薛中興、蔣作群、賴紹榮、陳振漢、朱光馨、徐曼珈、王盛時,實用奈米科技,2005。
[82]P. Alivisatos, “Semiconductor Cluters, Nanocrystals, and Quantum Dots,” Science, vol.271, pp.933-937.
[83]馬遠榮,低微奈米材料,科學發展,第382期,2004。
[84]R. Rossetti, S. Nakahara and L. E. Brus, “Quantum size effects in the redox potentials, resonace Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys, 1983, vol.79, pp.1086-1088.
[85]C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen. J. J.Wu, H. W. I. Wen and W. F. Pong, “Anomalous blueshift emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Applied Physics Letters, vol. 88, 2006, pp. 241905-1-241905-3
[86]蔡信行,孫光中,奈米科技導論-基本原理及應用 (第二版),2004。
[87]Z. Li, Q. Sun, X. D. Yao, Z. H. Zhu and G. Q, Lu, “Semiconductor nanowires fir thermoelectrics,” J. Mater. Chem, 2012, vol. 22, pp. 22821-22831
[88]R. S. Wagner and W. C. Ellis, “VAPOR-LIOUID SOLID MECHANISM OF SINGLE CRYSTAL GROWTH,” Applied Physics Letters, vol.4, 1964, p.89-
[89]Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chemistry of Materials, vol. 12, 2000, pp. 605-607.
[90]P. Yang and C. M. Lieber, “Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities,” Science, vol. 273, Science, pp. 1836-1840.
[91]Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Applied Physics Letters, vol. 76, 2000, pp. 2011-2013.
[92]Y. Hao, G. Meng, C. Ye and L. Zhang, “Reversible blue light emission from self-assembled silica nanocords,” Applied Physics Letters, Vol. 87, 2005, p. 033106(3).
[93]E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, 1997, pp. 1971-1975.
[94]T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbson and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, 1995, pp. 1791-1794.
[95]Z. Wang, X. Liu, J. Gong, H. Huan, S. Gu and S. Yang, ”Epitaxial Growth of ZnO Nanowires on ZnS Nanobelts by Metal Organic Chemical Vapor Deposition” Crystal Growth and Design, 2008, vol. 8, pp. 3911-3913
[96]B. Bercu, W. Geng, O. Simonetti, S. Kostcheev, C. Sartel, V. Sallet, G. Lerondel, M. Mo;inari, L. Giraudet and C. Couteau, “Characterizations of Ohmic and Schottky-behaving contacts of single ZnO nanowire,” Nanotechnology, 2013, vol. 24, p. 415202(7).
[97]K. Black, A. C. Jones, I. Alexandrou, P. N. Heys and P. R. Chalker, “The optical properties of vertically aligned ZnO nanowires deposited using a dimethlzinc adduct,” Nanotechnology, 2010, vol. 21, p. 045701(5).
[98]K. Subannajui, F. Guder, J. Danhof, A. Menzel, Y. Yang, L. Kirste, C. Wang, V. Cimalla, U. Schwarz and M. Zacharias, “An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrate by atomic layer deposition,” Nanotechnology, 2010, vol. 23, p. 235607(7).
[99]V. A. Kale, R. Prabhakar, S. S. Pramana, M. Rao, C. H. Sow, K. B. Jinesh and S. G. Mhaisalkar, “Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays,” Physical Chemistry Chemical Physics, vol. 14, 2014, pp. 4614-4619.
[100]M. Zhong, Y. Sato, M. Kurniawan, A. Apostoluk, B. Masenelli, E. Maeda, Y. Ikuhara and J. J. Delaunay, “ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications,” Nanotechnology, 2012, vol. 23, p. 495602(10).
[101]P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” CHEMISTRY OF MATERIALS, vol. 16, 2004, pp.5133-5137.
[102]L. Lu, J. Chen and W. Wang, “Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improverment of photovoltaic perfomance,” Nanoscale Research Letters, vol. 7, 2012 p. 293(6).
[103]M. M. Montero, A. Borras, Z. Saghi, J. P. Espinos, A. Barranco, J. Cotrino and A. R. G. Elipe, “Vertical and tilted Ag-NPs@ZnO nanorods by plasma-enchanced chemical vapor deposition”, Nanotechnology, vol. 23, 2012, p. 255303(12).
[104]X. Liu, X. Wu, H. Cao and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enchanced chemical vapor deposition,” JOURNAL OG APPLIED PHYSICS, vol. 95, 2004, pp. 3141-3147.
[105]Umar, B. K. Kim, J. J. Kim and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation”, Nanotechnology, vol. 18, 2007, p. 175606(7).
[106]H. B. Lu, H. Li, L. Liao, Y. Tian. M. Shuai, J. C. Li, M. F. Hu, Q. Fu and B. P. Zhu, “Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires,” Nanotechnology, vol. 19, 2008, p. 045605(7).
[107]L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, ADVANCED MATERIALS, vol. 15, 2003 pp. 464-466.
[108]N. J. Nicholas, G. V. Franks and W. A. Ducker, “The mechanism for hydrothermal growth of zinc oxide”, CrystEngComm, vol. 14, 2012, pp. 1232-1240.
[109]S. B.aruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures”, SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, vol. 10, 2009, p. 013001(18).
[110]S. L. Cheng, J. H. Syu, S. Y. Liao, C. F. Lin and P. Y. Yeh, “Growth Kinetics and wettability conversion of vertically-aligned ZnO nanowires synthesized by a hydrothermal method”, RSC Advances, vol. 5, 2045, pp. 67752-67758.
[111]M. C. Akgun, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt”, Journal of Materials Research, vol. 27, 2012, pp.1445-1451.
[112]M. Wang, C. H. Ye, Y. Zhang, H. X. Wang, X. Y. Zeng and L. D. Zhang, “Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueous method”, Journal of Materials Science: Materials in Electronics, vol. 19, 2008, pp.211-216.
[113]J. Song and S. Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods”, The JOURNAL OF PHYSICAL CHEMISTRY C, vol. 111, 2007, pp. 596-600.
[114]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds”, NANO LETTERS, vol. 5, 2005, pp.1231-1236.
[115]H. Zhang, J. Lu, X. Yang, Z. Ye, J. Hung, B. Lu, L. Hu, Y. Li, Y. Zhang and D. Li, “Inclined and ordered ZnO nanowire arrays developed on non-polar ZnO Seed layer films”, CrystEngComm, vol. 14, 2012, pp. 4501-4506.
[116]M. R. Alenezi, S. J. Henley, N. G. Emerson and S. Ravi P. Silva, “From 1D and 2D nanostructures to 3D hierarchical structures with enhanced gas sensing properties ”, Nanoscle, vol. 6, 2014, pp. 235-247.
[117]R. Wahab, Y. A. Kim and H. S. Shin, “Synthesis, Characterization and Effect of pH Variation on Zinc Oxide Nanostructures”, Materials Transactions, vol. 50, 2009, PP. 2092-2097.
[118]R. Das, A. Kumar, Y. Kumar, S. Sen and P. M. Shirage, “Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method”, RSC Advances, vol. 5, 2015, pp. 60365-60372.
[119]柯賢文,表面與薄膜處理技術,2008。
[120]G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed ”, Applied. Physics. Letters, vol. 99, 2011, pp. 203105-1-203105-3.
[121]A. Afal, S. Coskun and H. E. Unalan, “All solution proceed, nanowire enhanced ultraviolet photodetectors”, Applied. Physics. Letters, vol. 102, 2013, pp. 043503-1-043503-5.
[122]S. Rackauskas, K. Mustonen, T. Jarvinen, M. Mattila, O. Klimova, H. Jiang, O. Tolochko, H. Lipsanen, E. I. Kauppinen and A. G. Nasibulin, “Synthesis of ZnO tetrapods for flexible and transparent UV sensors,” Nanotechnology, vol. 23, 2012, p. 095502(7).
[123]X. Liu, X. H. Wu, H. Cao and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition , ” Journal of Applied Physics, vol. 95, 2004, pp. 3141-1 – 3141-7.
[124]楊志信,「一致磁化轉動模型之磁化曲線特性」,中華民國磁性技術協會會刊,第二十八卷,第四期,2006,第692頁。
[125]J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Applied Physics Letters, vol. 88, 2006, pp. 133114-1 – 133114-3.
[126]S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim and G. T. Kim, “Photoresponse of sol-gel-synthesized ZnO nanorods,” Applied Physics Letters, vol. 84, 2004, pp. 5022-1 – 5022-3.
[127]M. C. Jeong, B. Y. Oh, W. Lee and J. M. Myoung, “Optoelectronic properties of three-dimensional ZnO hybrid structure,” Applied Physics Letters, vol. 86, 2005, pp. 103105-1 – 103105-3.
[128]Y. Li, F. D. Valle, M. Simonnet, I. Yamada and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Applied Physics Letters, vol. 94, 2009, pp. 023110-1 – 023110-3.