(3.236.222.124) 您好!臺灣時間:2021/05/11 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林嘉暉
研究生(外文):Jia-Hui Lin
論文名稱:氧化鐵–鐵鉑–還原氧化石墨烯奈米複合材料之合成及特性
論文名稱(外文):Synthesis and characterization of Iron Oxide (IO)/FePt/ reduced graphene oxide (rGO) nanocomposites
指導教授:魏大華
指導教授(外文):Da-Hua Wei
口試委員:余岳仲陳洋元姚永德魏大華
口試委員(外文):Yueh-Chung YuYang-Yuan ChenYeong-Der YaoDa-Hua Wei
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:光熱療磁熱療甲醇燃料電池催化劑化學還原法還原氧化石墨烯氧化鐵鐵鉑
外文關鍵詞:photothermal therapy (PTT)magnetic fluid hyperthermia (MFH)catalyticDirect Methanol Fuel Cell (DMFC)reduced graphene oxide (rGO)Iron Oxdie(IO)FePt
相關次數:
  • 被引用被引用:2
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用化學還原法製備出鐵鉑–還原氧化石墨烯奈米複合材料。採用三乙二醇作為溶劑與還原劑、氧化石墨奈米薄片作為鐵鉑奈米粒子之載體。鐵鉑–還原氧化石墨烯奈米複合材料進一步的在合成過程中依添加鐵之前驅物之先後順序製備出不同微結構的氧化鐵/鐵鉑-還原氧化石墨烯複合材料。並觀測其微結構、組成、表面形貌和磁學性質等特性透過X光粉末繞射儀、傅立葉轉換紅外線光譜儀、拉曼光譜儀、掃描式電子顯微鏡、振動試樣磁力計、高週波加熱器、恆電位儀與近紅外線雷射光進行檢測。綜合上述分析結果,以X光繞射儀觀察到氧化鐵、鐵鉑以及還原氧化石墨烯之繞射峰。透過拉曼光譜儀可以看到氧化鐵的拉曼訊號介於200至800 cm-1進而分辨出氧化鐵之相,以及1000到2000 cm-1間還原氧化石墨烯之主要拉曼訊號出現。傅立葉轉換紅外線光譜儀可知其擁有Fe-O、-OH、C-H、C-O以及C=C等親油及親水官能基。添加氧化鐵之鐵鉑–還原氧化石墨烯材料透過振動試樣磁力計發現添加鐵前驅物形成氧化鐵時,其飽和磁化量隨氧化鐵加入而明顯增加。由高週波加熱器觀測材料之磁加熱性質,並透過電化學分析結果可以看到鐵鉑-還原氧化石墨烯間添加氧化鐵有降低燃料電池方面之鉑毒化作用,以及波長808 nm之紅外光加熱後發現有良好的光熱性質。
In this study, FePt/reduced graphene oxide (rGO) nanocomposies have been synthesized using a chemical reduction. Triethylene glycol (TEG) as both solvent and reductant, whereas graphene oxide (GO) nanosheets as a supported of FePt nanoparticles. And the precursor of Iron Oxide (IO) have been added at different times in to the synthesis of FePt/rGO nanocomposite to prepared the different structures of Iron Oxide/FePt/rGO nanocomposites. The microstructure, composition, surface morphology and magnetic property of this nanocomposites are methodically characterized by XRD, FI-IR, Raman spectrum, SEM, VSM, high-frequency heater, potentiostat and 808nm infrared diode laser. The above analysis result, it can be observed that the different peaks of rGO, IO and FePt in the XRD pattern. Raman spectroscopy can be observed the peaks of IO between 200 to 800 cm-1 and checking the phase of IO, and the main feature G and D band of rGO that between 1000 to 2000 cm-1. From the FT-IR spectrum, Fe-O, -OH, C-H, C-O and C=C were observed respectively. The saturation magnetization (Ms) of IO/FePt/rGO nanocomposites have been increased through the addition of iron oxide. Observing the properties of the sample through high-frequency heater. In the electrochemical analysis result that adding iron oxide could reduce the CO poisoning effect. Finally, the sample at the wavelength of 808 nm infrared laser have excellent property of photothermal therapy.
中文摘要.………………………………………………………………………….i
英文摘要.…………………………………………………………………………ii
誌謝……………………………………………………………....………………..iii
目錄………………………………………………………………………………...v
表目錄……………………………………………………………………………..x
圖目錄……………………………………………………………………………..xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與範圍 3
第二章文獻回顧與理論 4
2.1 奈米材料 4
2.2 奈米粒子的基本特性 4
2.2.1量子尺寸效應 4
2.2.2 量子尺寸效應 5
2.2.3 小尺寸效應 6
2.2.4量子穿隧效應 7
2.2.5庫倫堵塞效應 9
2.2.6奈米粒子的製備 9
2.3鐵鉑磁性奈米粒子的特性及製備 11
2.3.1 鐵鉑磁性奈米粒子的特性 11
2.3.2 鐵鉑奈米粒子的製備 13
2.4氧化鐵奈米粒子的特性及製備 16
2.4.1氧化鐵奈米粒子的特性 16
2.4.2氧化鐵奈米粒子的製備 17
2.5石墨烯的特性及製備 18
2.5.1石墨烯的特性 18
2.5.2化學還原法製備石墨烯 19
2.6石墨烯奈米複合材料的製備 21
2.7石墨烯奈米複合材料之應用 23
第三章 實驗方法及步驟 25
3.1 製備親水親油相FePt奈米粒子 26
3.1.1實驗藥品 27
3.1.2實驗設置 27
3.1.3實驗步驟 28
3.2製備氧化鐵奈米粒子 29
3.2.1實驗藥品 29
3.2.2 實驗設置 30
3.2.3 實驗步驟 31
3.3製備氧化石墨 32
3.3.1 實驗藥品 33
3.3.2實驗設置 34
3.3.3實驗步驟 35
3.4製備還原氧化石墨稀奈米片 36
3.4.1 實驗藥品 36
3.4.2 實驗設置 36
3.4.3 實驗步驟 37
3.5製備FePt@Iron Oxide核殼奈米粒子 38
3.5.1實驗藥品 39
3.5.2實驗設置 39
3.5.3實驗步驟 40
3.6製備Iron Oxide@FePt核殼奈米粒子 41
3.6.1實驗藥品 42
3.6.2實驗設置 42
3.6.3實驗步驟 43
3.7製備FePt/rGO奈米複合材料 44
3.7.1 實驗藥品 45
3.7.2 實驗設置 45
3.7.3 實驗步驟 46
3.8製備Iron Oxide/rGO奈米複合材料 47
3.8.1實驗藥品 48
3.8.2 實驗設置 48
3.8.3 實驗步驟 49
3.9製備(FePt@IO/rGO)奈米複合材料 50
3.9.1實驗藥品 51
3.9.2 實驗設置 51
3.9.3 實驗步驟 52
3.10製備(IO@FePt)/rGO奈米複合材料 53
3.10.1實驗藥品 54
3.10.2 實驗設置 54
3.10.3 實驗步驟 55
3.11製備FePt/(IO/rGO)奈米複合材料 56
3.11.1實驗藥品 57
3.11.2 實驗設置 57
3.11.3 實驗步驟 58
3.12儀器介紹 59
3.12.1 X光繞射儀 59
3.12.2場發射掃描式電子顯微鏡 60
3.12.3傅立葉轉換紅外線光譜儀 62
3.12.4振動試樣磁力計 63
3.12.5拉曼光譜儀 64
3.12.6高週波加熱器 65
3.12.7恆電位儀 66
3.12.8近紅外光熱療 68
第四章 實驗結果與討論 69
4.1 FePt、Iron Oxide奈米粒子 69
4.1.1 FePt、Iron Oxide奈米粒子晶體結構分析 69
4.1.2 FePt、Iron Oxide表面性質分析 71
4.1.3 FePt、Iron Oxide形貌分析 72
4.1.4FePt、Iron Oxide磁學分析 75
4.2 FePt、Iron Oxide核殼結構實驗結果與討論 76
4.2.1 FePt、Iron Oxide核殼結構粒子之晶體結構分析 77
4.2.2 FePt、Iron Oxide核殼結構粒子之表面性質分析 78
4.2.3 FePt、Iron Oxide核殼結構粒子之形貌分析 79
4.2.4 FePt、Iron Oxide核殼結構粒子之磁學分析 81
4.3 FePt/rGO、IO/rGO、實驗結果與討論 83
4.3.1 FePt/rGO、IO/rGO複合材料之晶體結構分析 83
4.3.2 FePt/rGO、IO/rGO複合材料之表面性質分析 86
4.3.3 FePt/rGO、IO/rGO複合材料之形貌分析 88
4.3.4 FePt/rGO、IO/rGO複合材料之磁學分析 91
4.4 FePt、IO及rGO複合材料實驗結果與討論 92
4.4.1FePt、IO及rGO複合材料之晶體結構分析 93
4.4.2FePt、IO及rGO複合材料之表面性質分析 97
4.4.3FePt、IO及rGO複合材料之形貌分析 99
4.4.4FePt、IO及rGO複合材料之磁學分析 104
4.4磁熱療檢測之實驗結果與討論 106
4.5電化學檢測之實驗結果與討論 108
4.6光熱療檢測之實驗結果與討論 114
第五章 結論 115
參考文獻 116
[1]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor Devices Based on Graphene Materials,” the Journal of Physical Chemistry C, vol. 113, 2009, pp. 13103-13107
[2]M. P. Hogarth and G. A. Hards, “Direct Methanol Fuel Cells,” Platinum Metals Review, vol. 40, 1996, pp. 150-159
[3]蔡定平,奈米檢測技術,新竹,臺灣:國家實驗研究院儀器科技研究中心,2009。
[4]蔡信行、孫光中,奈米科技導論-基本原理及應用,臺北:新文京開發,2004。
[5]郭清癸、黃俊傑、牟中原,「金屬奈米粒子的製造」,物理雙月刊,第二十三卷,第六期,2001,第614頁。
[6]王世敏,許祖勛、傅晶,奈米材料原理與製備,臺北:五南圖書,2004。
[7]W. S. Hummers Jr. and R. E. Offeman, “Preparation of graphitic oxide,” Journal of American Chemical Society, vol. 80, 1958, pp. 1339-1339.
[8]S. Sun, “Recent Advance in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles,” Adv. Mater., vol. 18, 2006, pp. 393-403.
[9]C. H. Yu, N. Caiulo, C. C. H. Lo, k. Tam, S.C. Tsang, “Synthesis and Fabrication of a Thin Film Containing Silica-Encapsulated Face-Centered Tetragonal FePt Nanoparticles,” Adv. Mater., vol. 18, 2006, pp. 2312-2314.
[10]M. S. Welloms, W. H. Morris, III, Z. Gai, J. Shen, J.Bentley, J. E. Wittig and C.M. Lukehart, “Direct Synthsis and Size Selection of Ferromagnetci FePt Nanoparticles”, Cehm. Mater., vol. 19, 2007, p. 2483.
[11]L. Colak, G. C. Hadjipanayis, “Chemically synthesizes FePt nanoparticles with controlled particle size, shape and composition,” Nanotechnology, vol. 20, 2009, pp. 485-602.
[12]N. Poudyal, G. S. Chabey, C. B. Rong, J.P. Liu, “Shape control of FePt Nanocrystals,” J. Appl. Phys., vol. 105, 2009, p. 07A749-07A749-3
[13]T. Burkert, O. Eriksson, S. I. Simak, A.V. Ruban, B. Sanyal, L.NordstrÖm, J. M. Wils, “Magnetic anisotropy of L10 FePt and Fe1-x¬MnxPt,” Phys. Rev. B, vol. 71, 2005, p. 134411.
[14]G. Brown, B. Kraczek, A. Janotti, T. C. Schulthess, G. M. Stocks, D. D. Johnson, “Competition between ferromagnetism and antiferromagnetism in FePt,” Phys. Rev. B., vol. 68, 2003, p. 405.
[15]S. Sun , C. B. Murray, D. Weller, L. Folks, A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,” Science, vol. 287, 2000, p.1989.
[16]O. Kitakami, S. Okamato, N. Kikuchi, Y. Shimada, “Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) Epitaxial films,” Phys. Rev. B., vol. 66, 2002, p. 024413.
[17]J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh, B. Ginatempo, E. Bruno, “Temperature Dependent Magnetic Anisotropy in Metallic Magnets from an Ab Initio Electronic Structure Theory: L10-Ordered FePt,” Phys. Rev. Lett., vol. 93, 2004, pp. 204-257.
[18]S. Sun, Eric E, D. Weller, C. B. Murray, “Compositionally Controlled FePt Nanoparticle Materials,” IEEE. Trans. Magn., vol. 37, 2001, p. 1239.
[19]S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray and Bruce D. Terris, “Controlled Synthesis and Assembly of FePt Nanoparticles,” J. Phys. Chem. B, vol. 107, 2003, pp. 5419-5425.
[20]K. E. Elkins, T. S. Vedantam, J. P. Lui, H. Zeng, S. Sun, Y. Ding, Z. L. Wang, “Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method,” Nanoletters, vol. 3, 2003, p. 1647.
[21]楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,二十八卷四期,2006年8月,第692頁。
[22]莊尚餘、陳學禮、鄭旭君、王鉦元、朱鐵吉、林俊宏,「金奈米粒子之特殊光學特性及應用」,奈米通訊,十二卷三期,第8頁。
[23]N. Shukla, C. Lui, P. M. Jones, D. Weller, “FTIR study of surfactant bondingto FePt nanoparticles,” J. Magn. Magn. Mater. vol. 266, 2003, p. 178.
[24]Cornell. R. M. and Schwertmann, “The Iron Oixdes: Structures, Properties, Reactions, Occurences and Used,” 2004.
[25]Y. Liu,S.Y. Jia, Q. A. Wu, J. Y. Ran, W. Zhang and S. H. Wu, “Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization,” Catal. Commun., vol. 12, 2011, p. 717.
[26]W. Wu, Z. Wu, T. Yu, C. Jiang and W. S. Kim, “Recent progress on magnetic iron oxide nanoparticles: synthsis, surface functional strategies and biomedical applications,” Sci. Technol. Adv. Mater., vol. 16, 2015, p. 023501.
[27]L. Machala, J. Tuček, R. Zbořil, “Polymorphous transformations of nanometric Iron(III) Oxide: A Review,” Chemistry of Materials, vol. 23, 2011, pp. 3255-3272
[28]Palmacci, W. S., Lee, J. U.S. Patent 5,262,176, November 16,1993.
[29]Sugimoto, T.; Matijevic, E. J. , “Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels,” Colloid Interface Sci., vol. 74,1980, p. 227.
[30]R. Fernandez-Pacheco, M. Arruebo, C. Marquina, J. Arbiol, M. R. ́Ibarra, J. Santamaria, “Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method” Nanotechnology, vol. 17, 2006, p. 1188.
[31]X. Cao, R. Prozorov, Yu. Koltypin, G. Kataby, I. Felner and A. Gedanken, “Synthesis of pure amorphous Fe2O3,” A. J. Mater. Res,. Vol. 12, 1997, p. 402.
[32]P. Kohli, C. R. Martin, “Template-synthesized nanotubes for biotechnology and biomedical applications,” Drug Delivery Sci. Technol., vol. 15, 2550, p.49.
[33]O. Bomati-Miguel, A. F. Rebolledo and P. Tartaj, “Controlled formation of porous magnetic nanorods via a liquid/liquid solvothermail method,” Chem. Commun., 2008, pp. 4168-4170.
[34]C.Pascal, J. L. Pascal, and F. Favier, “Eletrochemical Synthesis for the Control Of γ-Fe2O3 Nanoparticle Size. Morphology, MicroStructure, and Magnetic Behavior,” Chem. Mater., vol. 11, 1999, pp. 141-147.
[35]M. P. Pileni, “The role of soft colloidal templates in controlling the size and shaoe of inorganic nanocrystals,” Nature Materials, vol. 2, 2003, pp. 145-150.
[36]P. H. Mutin, A. Vioux, “Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity,” A. Chem. Mater., vol. 21, 2009, p. 582.
[37]S. J. Park, S. Kim, S. Lee, Z. G Khim, K. Char, T. Hyeon, “Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres,” J. Am. Chem. Soc., vol. 122, 2000, p. 8581.
[38]T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, “Sythesis of High Crtsalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process,” J. Am. Chem. Soc., vol. 123, 2001, pp. 12798-12801.
[39]S. Sun, H. Zeng, “Size-Controlled Sythesis of Magnetite Nanoparticles,” J. Am. Chem. Soc., vol. 124, 2002, p. 8204.
[40]N. Miguel-Sancho, O. Bomati-Miguel, A. G. Roca, G. Martinez, M. Arruebo, and J. Santamaria. “Sythesis of Magnetic Nanocrystals by Thermail Decomposition in Clycol Media: Effect of Process Variables and Mechanistics Study,” Ind. Eng. Chem. Res. Vol. 51, 2012, pp. 8348-8357.
[41]J. Wan, W. Cai, X. Meng, E. Liu, “Monodisperse water- soluble magnetite nanoparticles prepared by polyol process for high- performance magnetic resonance imagine,” Chem. Commum., vol. 47, 2007, pp. 5004-5006.
[42]D. Maity, S, N. Kale, R. Kual-Ghanekar, J. M. Xue, J. Ding, “Studies of magnetite nanoparticles synthesized by thermail decomposition of iron (III) acetylacetonate in tri(ethylene glycol),” J. J. Magn. Magn. Mater. vol. 321, 2009, p. 3093.
[43]S. Mouas, A. Hamm, D. Djurado, “Sythesis of first stage graphite intercalation compounds with fluorides,” Revue de Chimie Mineale, vol. 6, 1987, pp. 572-582.
[44]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin cabon films,” Science, vol. 306, 2004, pp. 666-669.
[45]郭至儒,鐵鉑-還原氧化石墨烯奈米複合材料合成及特性分析,碩士論文,國立台北科技大學製造科技研究所,台北,2014
[46]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, 2008, pp. 385-388.
[47]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, 2008, pp. 902-907.
[48]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, “Ultrahigh eletron mobility in suspended graphene,” Solid State Communications, vol. 146, 2008, pp. 315-355.
[49]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, 2008, p. 1308.
[50]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimmey, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-base composite materials,” Nature, vol. 422, 2006, pp. 282-286.
[51]B. Jang, O. B. Chae, S-K. Park, J. Ha, S. M. Oh, H. B. Na, and Y. Piao, “Solventless synthesis of an iron-oxide/graphene nanocomposite and its application as an anode in high-rate Li-ion batteries” J. Mater. Chem. A, vol, 1, 2013, pp. 15442-15446.
[52]L. Xiao, M. Schroeder, S. Kluge, A. Balducci, U. Hagemann, C. Schulz, and H. Wiggers, “Direct self-assembly of Fe2O3/reduced graphene oxide nanocomposite for high- Performance lithium-ion batteries,” J. Mater. Chem. A, vol. 3, 2015, pp. 11566-11574.
[53]L. Zhao, M. Gao, W. Yue, Y. Jiang, Y. Wang, Y. Ren, and F. Hu, “Sandwich-Structured Graphene-Fe¬3O4@Carbon Nanocomposites for High-Performance Lithium Batteries,” ACS Appl. Mater. Interfaces, vol. 7, 2015, pp. 9709-9715.
[54]Q. Qu, S. Yang, X. Feng, “2D Sandwich-like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors,” Adv. Mater., vol. 23, 2011, pp. 5571-5580.
[55]Y. C. Eeu, H. N. Lim, Y. S. Lim, S. A. Zakarya, and N. M. Huang, “Electrodeposition of polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite ad Supercapacitor Electrode Material,” J. Nanomater., vol. 2013, 2013, p. 6.
[56]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. De Heer, “Electronic Confinement and Coherence in Patterened Exitaxial Graphene,” Science, vol. 312, 2006, pp. 1191-1196.
[57]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-Area Sythesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, 2009, pp. 1312-1314.
[58]D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. B. H. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature, vol.448, 2007, pp. 457-460.
[59]S.Stankiovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Rouff, “Sythesis of graphene-base nanosheet via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, 2007, pp. 1558-1565.
[60]盧柏諺,利用XAS對電致變色氧化釩/石墨烯薄膜原子與電子結構之研究,碩士論文,國立台北科技大學製造科技研究所,台北,2014。
[61]L. H. Tang, Y. Wang, Y. M. Li, H. B. Feng, J. Lu, J. H. Li, “Preparation, Structure, and Electrochemical Prooerties od Reduced Graphene Sheet Films” Adv. Funct. Mater., vol. 19, 2009, pp. 2782-2789.
[62]W. S. Hummers, R. E. Offeman, “Preparation of graphite oxide,” J. Am. Chem. Soc., vol. 80, 1958, p. 1339.
[63]J. B. Oostinga, H. B. Heersche, X, Liu, A. F. Morpurgo, K. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices” Nat. Mater., vol. 7 2007, pp.151-157.
[64]P. Ramesh, S. Bhagyalakshmi, S. Samoath, “Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide,” J. Colloid. Interf. Sci., vol. 274, 2004, pp. 95-102.
[65]D. Li, M. B. Müller, Scott Gilje, R. B. Kaner, G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotech., vol. 3, 2008, p. 101.
[66]H. He, J. Klinowski, M. Forster, A. Lerf, “A new structural model for graphite oxide,” Chem. Phys. Lett., vol. 287, 1998, p. 287.
[67]K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat Chem., vol. 2, 2010, p. 1015.
[68]X. Huang, X. Qi, F. Boey, and H. Zhang, “Graphene-based composites,” Chem. Soc. Rev., vol. 41, 2012, pp. 666-686.
[69]X. Bian, Z. L. Song, Y. Qian, Wei Gao, Z. Q. Cheng, L. Chen, H. Liang, D. Ding, X. K. Nie, Z. Chen, and W. Tan, “Fabrication of Graphene-isolated-Au-nanocrystal Nanostructures for Multimodal Cell Imagine and Photothermal-enhanced Chemotherapy,” Sci. Rep., vol. 4, 2014, p. 6093.
[70]Y. Wu, G. Gao, G. Wu, “Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cucle life,” J. Mater. Chem. A, vol. 3, 2015, pp. 1828-1832.
[71]J. H. Liu, Y. H. Niu, J.Y. Qi, and X. Li, “Photocatalytic Reduction of CO2 Using TiO2-Graphene Nanocomposites,” J. Nanomater. , vol. 2016, 2016, p. 5.
[72]Y. Li, L. Tang, J. Li, “Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites,” Electrochem. Commun., vol. 11, 2009, pp. 846-849.
[73]S. J. Guo, S. Sun, “FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction,” J. Am. Chem. Sec., vol. 134, 2012, pp. 2492-2495.
[74]Z. Ji, G. Zhu, X. Shen, H. Zhou, C. Wu, and M. Wang, “Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation,” New. J. Chem., vol.36, 2012, pp.1774-1780.
[75]G. Wei, Y. Zhang, S. Steckbeck, Z. Su, and Z. Li, “Biomimetic graphene-FePt nanohybrids with high solubility, ferromagnetism, fluorescence, and enhanced electrocatalytic activity,” J. Mater. Chem., vol. 22, 2012, pp. 17190-17195.
[76]D. Chen, X. Zhao, S. S. Chen, H. F. Li, X. N. Fu, Q. Z. Wu, S. P. Li, Y. Li, B. L. Su, and R. S. Ruoff, “One-pot fabrication of FePt/reduced graphene oxide composites ad highly active and stable electrocatalysts for the oxygen reduction reaction,” Carbon, vol. 68, 2014, pp. 755-762.
[77]J. C. Yang, W. Zhang, “Indicator-free impedimetric detection of BCR/ABL fusion gene based on ordered FePt nanoparticle-decorated electrochemically reduced graphene oxide,” J. Solid State Electrochem., vol. 18, 2014, pp.2863-2868.
[78] X. Hu, V. Tzitzios, D. Sellmyer, and G. Hadjipanayis, “Facile synthesis of L10 FePt/reduced-graphene oxide nanocomposites,” APS March Meeting 2015, San Antonio, Texas, 2015, vol. 60, no. 1.
[79]W.Zhang, and Y. Su. “Development of DNA monitoring platform based on poly (xanthurenic acid) functionalized FePt/reduced graphene oxide,” J. Solid State Electrochem., vol. 19, 2015, pp. 1285-1291.
[80]W. Chen, P. Yi, Y. Zhang, L. Zhang, Z. Deng and Z/ Zhang, “Composites of Aminodextran-Coated Fe3O4 Nanoparticles and Graphene Oxide for Cellular Magnetic Resonance Imaging,” ACS. Applied Materials and Interfaces, vol. 3, 2011, pp. 4085-4091
[81]X. Ma, H. Tao, K. Yang. L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo and Z. Liu, “A Functionalized Graphene Oxide-Iron Oxide Nanocomposite for Magnetically Targeted Drug Delivery, Photothermal Therapy, and Magnetic Resonance Imaging,” Nano Reasearch, vol. 5,2012, pp.199-212
[82]W. Shi, J. Zhu, D. H. Shin, Y. Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hng and Q. Yan “Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites,” Journal od Materials Chemistry, vol. 21, 2011, pp. 3422-3427
[83]Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng and K. Müllen, “3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Ruduction Reaction,” Journal of the American Chemical Society, vol. 134, 2012, 9082-9085
[84]R. A. Lemons, “Fuel cells for transportation,” Journal of Power Sources, vol. 29, 1990, pp. 251-264
[85]J. M. Léger, S. Rousseau, C. Coutanceau, F. Hahn, C. Lamy, “How bimetallic electrocatalysts does work for reactions involved in fuel cells?: Example of ethanol oxidation and comparison to methanol,” International Society of Electrochemistry, vol. 50, 2005, pp.5118-5125
[86]C. Lu, C. Rice and R. I. Masel, “UHV, electrochemical NMR, and electrochemical studies of Platinum/Ruthenium fuel cell catalysts,” The Journal of Physical Chemistry B, vol. 106, 2002, pp. 9581-9589
[87]H. Song, X, Qiu, F. Li, “Promotion of carbon nanotube-supported Pt catalyst for methanol and ethanol eletro-oxidation by ZrO¬2 in acidic media,” Applied Catalysis A: General, vol. 364, 2009, pp.1-7
[88]D. M. Gu, Y. Y. Chu, Z. B. Wang, Z. Z. Jiang, G. P. Yin, Y. Liu, “Methanol oxidation on Pt/CeO2-C electrocatalyst prepared by microwave-assisted ethylene glycol process,” Applied Catalysis B: Environmental, vol. 102, 2010, pp. 9-18
[89]Y. Huamg, Y. Liu, Z. Yang, J. Jia, X. Li, Y. Luo and Fang, “Synthesis of yolk/shell Fe3O4-polydopamine-Pt nanocomposite with high electrocatalytic activity for fuel cells,” Journal of Power Sources, vol. 246, 2014, 868-875
[90]D. C. Lee, F. V. Mikulec, J. M. Pelaez, B. Koo, and A. Korgel, “Sythesis and magnetic properties of Silica-coated FePt nanocrystals,” The Journal of Physical Chemistry B, vol. 110, 2006, pp. 11160-11166
[91]H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. Nikles and D. T. Johnson, “Understanding mercapto ligand exchange on the surface of FePt nanoparticles,” Langmuir, vol. 22, 2006, pp. 7732-7737
[92]C. Xu, S. Sun, “Monodisperse magnetic nanoparticles for biomedical applications,” Polymer International, vol. 56, 2007, pp. 821-826
[93]A. H. Latham and M. E. Williams, “Controlling transport and chemical functionality of magnetic nanoparticles,” Accounts of Chemical Reseach, vol. 41, 2008, pp. 411-420
[94]H. Yang, J. Zhang, Q. Tian, H. Hu, Y. Fang, H. Wu, S. Yang, “One-Pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro,” Journal of Magnetism and Magnetic Materials, vol. 322, 2010, pp. 973-977
[95]K. Krishnamoorthy, G. S. Kim, S. J. Kim, “Graphene nanosheets: Ultrasoung assisted synthesisand characterization,” Ultrasonics Sonochemistry, vol. 20, 2013, pp. 644-649
[96]H. Zeng, J. Li, Z. L. Wang, J. P. Lui, and S. Sun, “Bimagnetic core/shell FePt/Fe3O4 nanoparticles,” Nano Letters, vol. 4, 2004, pp. 187-190
[97]J. F. Shackelford,材料科學(蔡希杰譯),臺北:臺灣培生教育出版:偉明圖書,2008,第10頁。
[98]周景泰,鐵鉑-氧化鋅奈米結構和成及自組裝特性,碩士論文,國立台北科技大學製造科技所,台北,2011。
[99]汪建民,材料分析,台北:民全書局,1998,第215、501、502、516、659、660、662、668頁。
[100]鍾騏任,鐵鉑-二氧化鈦奈米複合材料合成及特性分析,碩士論文,國立台北科技大學機電整合研究所,台北,2012。
[101]I. D. Mayergoyz, Mathematical Models of Hysteresis, New York: Springer-verlag,1991
[102]G. Bertotti, Hysteresis in Magnetism, New York: Academic Press, 1998
[103]V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shied and J.C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology, vol. 16, 2005, pp. 1221-1233
[104]M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 268, 2004, pp. 33-39
[105]X. Zhang, Y. Niu, X. Meng, Y. Li and J. Zhao, “Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres,” CrystEngComm, vol. 15, 2013, pp. 8166-8172
[106]P. Gibot, E. Tronc, C. Chaneac, J. P. Jolivet, D. Fiorani, A. M. Testa, “(Co, Fe)Pt nanoparticles by aqueous route; self-assembling, thermal and magnetic properties,” Journal of Magnetism and Magnetic Materials, 290-291, 2005, vol. 555-558
[107]R. Hong, N. O. Fischer, T. Emrick, V. M. Rotello, “Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications,” Chemistry of Materials, vol. 17, 2005, pp.4617-4621
[108]K. Krishnamoorthy, M. Veerapandian, R. Mohan and S. J. Kim, “Investigation of Raman and photoluminescence studies od reduced graphene oxide sheets,” Applied Physics A, Vol. 106, 2012, pp. 501-506
[109]T. Iwasita, “Electrocatalysis of methanol oxidation,” Electrochimica Acta, vol. 47, 2002, pp. 3633-3674
[110]Z. F. Wang, L. Shi, G. Z. Gou, A. P. Fan, C. Xu and L. Zhang, “Pt/C catalyst for methanol electro-oxidation and oxygen electro-reduction in DMFC,” Advanced Materials and structural Engineering, 2016, pp. 167-170
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔