(3.238.98.214) 您好!臺灣時間:2021/05/08 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝陽明
研究生(外文):Yang-Ming Hsieh
論文名稱:以有限元素分析探討偏心型與往復式鎳鈦旋轉器械在根管製備時之力學行為
論文名稱(外文):The Mechanical Behavior of Protaper Next and Waveone Instruments during Canal Preparation – Finite Element Analysis
指導教授:陳文斌陳文斌引用關係
指導教授(外文):Weng-Pin Chen
口試委員:姜昱至章浩宏林俊彬
口試委員(外文):Weng-Pin ChenWeng-Pin ChenWeng-Pin Chen
口試日期:2016-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:器械斷裂扭矩有限元素分析鎳鈦旋轉器械往復式根管治療
外文關鍵詞:Instrument fractureTorqueNi-Ti rotary instrumentFinite element analysisReciprocating motionEndodontic treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
目前鎳鈦旋轉器械已廣泛應用於根管治療當中,雖然鎳鈦合金的彈性佳,但仍然有發生無預警斷裂的情形發生,過去研究指出,最常見的斷裂情況為疲勞破壞與扭轉破壞,器械斷裂原因最主要是受器械幾何外型與切削旋轉的影響。為探討上述因素,過去文獻多半以力學實驗或靜態有限元素分析,本研究將使用動態有限元素分析對兩種器械做一系列的力學切削模擬,以了解根管修形時器械扭矩變化或應力分佈等力學行為來評估器械的表現。本研究提出一套具破壞準則的動態分析方法,模擬ProTaper Next X2(PTN X2)與WaveOne Primary(WO)器械在修形切削牙根管時的力學行為並與力學切削試驗進行驗證,之後改變不同進給速率與切削深度,探討這些參數的改變對器械造成的影響。
本研究使用Abaqus有限元素分析軟體進行動態分析。在轉速設定上,PTN X2與WO分別為300和350 rpm,而進給速率與切削深度設為1 mm/s與6 mm,其中WO採用往復式旋轉,設定方式為使用Amplitude功能中Tabular的選項,並且計算0~0.2之間的斜率進行設定,其切削方式為逆轉150度,再正轉30度;在力學切削試驗的部分,試片採用壓克力塊進行實驗,而器械切削參數設定與分析時之設定方式相同。
由本研究所進行的分析與實驗的結果得知,兩者的扭矩趨勢相似,因此,確保此有限元素分析是可行的。接著,我們進行分三次切削至6 mm與一次進到6 mm的分析結果比較,分次切削的扭矩趨勢有下降的趨勢;另外,用分次切削的分析設定改變進給速率( 0.5、2 mm/s ),從結果中得到,當進給速率在0.5 mm/s時扭矩值無明顯的差異;在2 mm/s進給速率下,扭矩值有明顯的上升趨勢。因此,多次切削至指定深度以及進給速率的提高,皆會對器械造成影響。最後,欲了解器械的斷裂型態,本研究利用掃描式電子顯微鏡評估器械的斷面情況,發現斷面上有拉長的韌窩,並且初始斷裂區域沒有疲勞紋的產生,因此判斷本研究力學切削試驗器械斷裂的原因均為扭轉斷裂。
由本研究的分析結果中可以觀察到,改變分析的負載條件,會影響扭矩值的高低。因此,未來可先透過有限元素分析在當改變器械設計或切削方式時對器械力學行為進行評估,讓器械製造商及牙醫師能夠事先參考,避免器械不必要的斷裂。
Currenly, Ni-Ti rotary files are broadly used in routine endodontic treatments. Although Ni-Ti alloy possesses good superelastic material property, however, unexpected Ni-Ti rotary file fractures are still reported in clinical practice. From previous literaures, most commonly seen instrument fractures are due to cyclic fatigue and torsional failure. The major factors causing instrument fractures are highly related to the instrument geometry and the movement setting of the rotary file during canal shaping. In order to understand the effects of these factors, mechanical testings and static finite element analysis (FEA) are commonly performed in previous literature. In the current study, a dynamic FEA was proposed to simulate a series of root canal shaping procedures in order to undertand the mechanical behaviors, such as, torques and stress distributions on the rotary files. This dynamic FEA procedure incorporated a failure criterion to simulate the root canal shaping procedures for two different rotary files, ProTaper Next X2(PTN X2) and WaveOne Primary(WO). The actual mechanical testings were also performed for these two files using acrylic resin block to simulate the root canal. The FEA results were firstly compared and validated with results from mechanical testings. Following the validation of the FEA, different feed rates and cutting depths were analyzed in order to investigate their effects on the rotary files during shaping.
A commercial FEA package (Abaqus) was used to perform the dynamic analyses in the sudy. The rotational speeds for the PTN X2 and WO were set to be 300 and 350 rpm, respectively. The feed-rate for both files was set to be 1 mm/s. A reciprocating rotation pattern (150∘counter-clockwise then 30∘clock-wise rotation) was assigned for the WO file. For the mechanical testings, the same settings for the rotational speeds and feed rates used for the FEA were adopted for the experiment by using acrylic resin blocks as test specimens.
From the FEA and mechanical testing results, they presented similar trends in the torques during root canal shaping procedure. These results confirmed the feasibility and validity of the FEA. Two different types of canal preparation were simulated, one is directly advancing the files to a depth of 6 mm continuously, the other one is advancing the file back-and-forthly to the depths of 2, 4, and 6 mm, respectively. Analysis results found that advancing the fil back-and-forthly to the 6 mm depth has lower torque values which might prevent file fracture. Also, the feed rates were changed from 1 mm/s to 0.5 mm/s and 2 mm/s. The results showed that no significant difference in torques for the 0.5 mm/s feed rate when compared to that for 1 mm/s. On the other hand, significantly higher torque valuses were found for the case with 2 mm/s feed rate. Scanning electron microscope (SEM) images for the fractured files from mechanical testings were obtained and observed. SEM images showed that all files were fractured due to torsional fractures and no cyclic fatigue patterns were found since straight root canal resin blocks were used in the experiment.
From the current FEA study, when the loading conditions, such as the file movement patterns, feed rates, and geometry were changed, the torques on the files will be affected accordingly. In the future, such FEA may be performed in advance when designing files or changing the canal preparation procedures. Important information can be provided to rotary file manufacturers and dentists and the unwanted file fracture incidences may be further reduced.
中文摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2研究背景與文獻回顧 3
1.2.1 牙根管治療 3
1.2.2 根管治療文獻回顧與發展 3
1.2.3有限元素分析文獻回顧 7
1.3研究動機 12
第二章 基礎理論 13
2.1牙科生理學 13
2.2根管治療介紹 15
2.3鎳鈦旋轉器械介紹 16
2.4有限元素分析 17
2.4.1 破壞準則理論 17
2.4.2 Abaqus振幅曲線介紹 19
第三章 材料與方法 21
3.1研究流程 21
3.2 材料與儀器介紹 23
3.2.1 鎳鈦旋轉器械 23
3.2.2 仿牙本質之簡化根管模型製作 24
3.2.3 精密動態鑽孔量測裝置 25
3.2.4 X-Smart iQ機台介紹 27
3.3研究方法 28
3.3.1 精密動態量測裝置之力學切削試驗流程 28
3.3.2 X-Smart iQ機台之力學切削試驗流程 29
3.3.3 有限元素分析模型建立 30
3.3.4鎳鈦旋轉器械、牙本質與壓克力材料參數設定 34
3.3.5 有限元素分析負載條件設定 37
第四章 結果 39
4.1力學切削試驗結果 39
4.2器械斷裂之橫截面影像結果 41
4.3有限元素分析器械蒙麥斯應力分佈結果 42
4.4力學切削試驗與有限元素分析驗證 43
4.5 ProTaper Next X2以有限元素分析比較不同進給方式 45
第五章 討論 48
5.1 探討器械斷裂型態 48
5.2 觀察有限元素分析橫截面應力分布之影響 50
5.3 實驗與有限元素分析扭矩值差異 51
5.4 探討WaveOne與ProTaper Next X2兩者差異 52
5.5 研究限制 53
第六章 結論 54
參考資料 55
[1]B. S. Chong, "Hartys Endodontics in Clinical Practice E-Book, 6th Edition., " 2010.
[2]C. J. Ruddle, "Cleaning and Shaping the Root Canal System," Pathway of the pulp 8th edition, pp. 244-245, 2002.
[3]H. Schilder, "Cleaning and shaping the root canal," Dent Clin North Am, vol. 18, pp. 269-296, 1974.
[4]N. Usman, J. C. Baumgartner, and J. G. Marshall, "Influence of instrument size on root canal debridement," Journal of Endodontics, vol. 30, pp. 110-2, Feb 2004.
[5]K.S.Al-Fouzan, "Incidence of rotary ProFile instrument fracture and the potential for bypassing in vivo," International Endodontic Journal, vol. 36, pp. 864-867, 2003.
[6]M.C.Crump and E.Natkin, "Relationship of broken root canal instruments to endodontic case prognosis: a clinical investigasion," The Journal of the American Dental Association, vol. 80, pp. 1341-1347, 1970.
[7]劉維定, "根管製備流程對於鎳鈦旋轉器械力學行為之影響," 國立台北科技大學製造科技研究所碩士學位論文, 2015.
[8]N. H. Minas, J. Meister, R. Franzen, N. Gutknecht, F. Lampert, and M. Mir, "In vitro preliminary study to evaluate the capability of Er,Cr:YSGG laser in posterior teeth root-canal preparation with step-back technique," Lasers in Medical Science, vol. 24, pp. 7-12, Jan 2009.
[9]F. S. Weine, R. F. Kelly, and P. J. Lio, "The effect of preparation procedures on original canal shape and on apical foramen shape," Journal of Endodontics, vol. 1, pp. 255-262, 1975.
[10]S. Civjan, E.F.Huget, and L.B.DeSimon, "Potential applications of certain nickel-titanium (nitinol) alloys," Journal of Dental Research, vol. 54, pp. 89-96, 1975.
[11]H. Walia, W. A. Brantley, and H. Gerstein, "An initial investigation of the bending and torsional properties of nitinol root canal files," Journal of Endodontics, vol. 14, pp. 346-351, 1988.
[12]B. Sattapan, G. J. Nervo, J. E. Palamara, and H. H. Messer, "Defects in rotary nickel-titanium files after clinical use," Journal of Endodontics, vol. 26, pp. 161-5, Mar 2000.
[13]P. Parashos, I. Gordon, and H. Messer, "Factors Influencing Defects of Rotary Nickel-Titanium Endodontic Instruments After Clinical Use," Journal of Endodontics, vol. 30, pp. 722-725, 2004.
[14]H. P. Lopes, C. N. Elias, J. F. Siqueira, Jr., R. G. Soares, L. C. Souza, J. C. Oliveira, et al., "Mechanical behavior of pathfinding endodontic instruments," Journal of Endodontics, vol. 38, pp. 1417-21, Oct 2012.
[15]G. Yared, "Canal preparation using only one Ni-Ti rotary instrument: preliminary observations," International Endodontic Journal, vol. 41, pp. 339-44, Apr 2008.
[16]G.De-Deus, E. J. L.Moreira, H. P.Lopes, and C. N.Elias, "Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement," International Endodontic Journal, vol. 43, pp. 1063-1068, 2010.
[17]E. W. Zhang, G. S. Cheung, and Y. F. Zheng, "Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis," Journal of Endodontics, vol. 36, pp. 1394-8, Aug 2010.
[18]S.H.Baek, C.J.Lee, A.Versluis, B.M.Kim, W.Lee, and H.C.Kim, "Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics," Journal of Endodontics, vol. 37, pp. 1283-6, Sep 2011.
[19]Y.Gao, G. S.Cheung, Y.Shen, and X.Zhou, "Mechanical behavior of ProTaper universal F2 finishing file under various curvature conditions: a finite element analysis study," Journal of Endodontics, vol. 37, pp. 1446-50, Oct 2011.
[20]J. H. Ha, G. S. Cheung, A. Versluis, C. J. Lee, S. W. Kwak, and H. C. Kim, "Screw-in tendency of rotary nickel-titanium files due to design geometry," International Endodontic Journal, vol. 48, pp. 666-72, Jul 2015.
[21]A. Scattina, M. Alovisi, D. S. Paolino, D. Pasqualini, N. Scotti, G. Chiandussi, et al., "Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis," Journal of Endodontics, vol. 41, pp. 1867-70, Nov 2015.
[22]医學百科, "http://www.wiki8.com/kouqiang_48432/."
[23]W.J.Buehler, J.V.Gilfrich, and R. C. Wiley, "Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi," Journal of Applied Physics, vol. 34, pp. 1475-1477, 1963.
[24]S. A. Thompson, "An overview of nickel–titanium alloys used in dentistry," International Endodontic Journal, vol. 33, pp. 297–310, 2000.
[25]中國科學院, "http://www.amss.cas.cn/wh/cxwk/200908/t20090807_2352477.html."
[26]"Abaqus Analysis Users Manual (v6.7)."
[27]"Abaqus6.14 Documentation."
[28]Dentaltix,"https://www.dentaltix.com/fr/maillefer/wave-one-limes-assortieses-1xs-1xp-1xl."
[29]C. J. Ruddle, "PROTAPER NEXT™."
[30]Dentbay,"http://www.dentbay.com/Dentsply-Protaper-Next-Rotary-Files-25mm-id-1560393.html."
[31]DentistryToday,"http://dentistrytoday.com/endodontics/7095-a-single-file-system-qthe-science-of-simplicityq."
[32]"ENDODONTIC SOLUTIONS " 2011.
[33]J. Webber, "The WaveOne single-file reciprocating system," 2011.
[34]SantosLdeA., M. G. Bahia, E. B. de Las Casas, and V. T. Buono, "Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis," Journal of Endodontics, vol. 39, pp. 1444-7, Nov 2013.
[35]M. GW, M. SJ, K. JH, and B. M, "The dentin substrate: structure and properties related to bonding," Journal of Dentistry, vol. 25, pp. 441-458, 1997.
[36]F. Peyton, D. Mahler, and B. Hershenov, "Physical properties of dentin," Journal of Dental Research, vol. 31, pp. 366-370, 1952.
[37]V. Jardret and P. Morel, "Viscoelastic effects on the scratch resistance of polymers: relationship between mechanical properties and scratch properties at various temperatures," Progress in Organic Coatings, vol. 48, pp. 322-331, 2003.
[38]A.Arias, R.Singh, and O.A.Peters, "Torque and force induced by ProTaper universal and ProTaper next during shaping of large and small root canals in extracted teeth," Journal of Endodontics, vol. 40, pp. 973-6, Jul 2014.
[39]H. C. Kim, S. W. Kwak, G. S. Cheung, D. H. Ko, S. M. Chung, and W. Lee, "Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne," Journal of Endodontics, vol. 38, pp. 541-4, Apr 2012.
[40]C. Pirani, O. Ruggeri, P. P. Cirulli, G. A. Pelliccioni, M. G. Gandolfi, and C. Prati, "Metallurgical analysis and fatigue resistance of WaveOne and ProTaper nickel-titanium instruments," Odontology, vol. 102, pp. 211-6, Jul 2014.
[41]B. P. G. S. P. Cheung, Z. Bian, Y. Shen, B. W. Darvell, "Defects in ProTaper S1 instruments after clinical use: fractographic examination," International Endodontic Journal, vol. 38, pp. 802-809, 2005.
[42]J.H.Ha, S. R.Kim, A. Versluis, G. S.Cheung, J. W.Kim, and H. C.Kim, "Elastic limits in torsion of reciprocating nickel-titanium instruments," Journal of Endodontics, vol. 41, pp. 715-9, May 2015.
[43]H. Wu, C. Peng, Y. Bai, X. Hu, L. Wang, and C. Li, "Shaping ability of ProTaper Universal, WaveOne and ProTaper Next in simulated L-shaped and S-shaped root canals," BMC Oral Health, vol. 15, p. 27, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔