(3.238.96.184) 您好!臺灣時間:2021/05/15 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:龔姿伃
研究生(外文):Tzu-Yu Kung
論文名稱:神經回饋融入兒童專注力訓練之腦波遊戲設計與研究
論文名稱(外文):A Design and Study of EEG-Based Neurofeedback Games for Children’s Attention Training
指導教授:鄭建文鄭建文引用關係
口試委員:戴楠青楊東華
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:互動設計系碩士班(碩士在職專班)
學門:設計學門
學類:視覺傳達設計學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:腦波、神經回饋、腦機介面、專注力
外文關鍵詞:Brainwave、NeuroFeedback、Brain-Computer Interface、Attention
相關次數:
  • 被引用被引用:4
  • 點閱點閱:684
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
腦波神經回饋遊戲為訓練注意力不集中兒童提升其專注力的有效方式。隨著科技的進步,腦機介面從繁複、侵入式轉變為易於穿戴且非侵入式的操作介面,進而使腦波互動介面的應用領域更加寬廣,從傳統醫療逐漸擴展至心理學及教育學等領域。而利用頭戴式腦波儀結合神經回饋訓練遊戲,其穿戴便利、且易於結合開放原始碼以實作遊戲程式與分析腦波數據與的特性,同時具備了吸引兒童的遊戲特質與訓練目的,在教育領域上提供了訓練與改善專注力的效果。目前研究多針對兒童注意力不集中與過動的族群,進行腦波遊戲的專注度訓練,研究結果顯示以腦波神經回饋的方式,能夠使該族群兒童自發性的學習改善大腦皮質活動或特定行為,進而增進注意力集中程度與學習能力,並改善其行為表現。
本研究根據神經回饋理論以及符合學齡兒童認知接受程度的設計原則,設計兩款以專注力訓練為目的之腦波遊戲。並將現有腦波神經回饋研究訓練之目標對象,擴展為一般正常學齡兒童及注意力不足學齡兒童族群,以國小三年級普通班與潛能班學生為對象,進行本研究設計之兩款腦波遊戲專注力訓練。本研究腦波遊戲專注力訓練之神經回饋資訊以圖像方式呈現,於遊戲過程中即時呈現資訊並提供回饋訓練,最後透過腦波儀所獲得之腦波參數進行專注度分析,以研究兩款腦波遊戲對不同兒童族群之專注力訓練成效與影響。根據統計分析結果,不同兒童族群經過本研究設計之腦波專注力遊戲訓練,皆有顯著的專注力改善成效。
An electroencephalogram (EEG) based neurofeedback computer game is an effective way to enhance children’s ability to attend. As technology advances, Brain-Computer Interface (BCI) has converted from a complex and intrusive operation into an easy-to-wear and non-intrusive one. Thus, it expands the application of the interface from a traditional medical purpose to psychological and educational purposes. By applying the head-mounted EEG meter integrated with neurofeedback games, this approach tends to attract children to play games with certain specified training purpose. Since it possesses the advantages of being both user-friendly and easy to combine the open source library derived and analyzed from the meter, the approach is effective in terms of training and attention fostering in the field of education. Most of the current researches tend to apply brainwave games to children with syndrome of Attention-Deficit Hyperactivity Disorder (ADHD). As concluded by these researches, the approach of using EEG based neurofeedback can enable children with the syndrome to learn to enhance the cerebral cortex or certain behaviors spontaneously so as to increase the level of attention fostering and their learning abilities as well as their behaviors.
Based on the theory of neurofeedback, we design two sets of attention training games which are applicable to school-age children with consideration of the relative acceptance of cognition. In addition, the training target of EEG based neurofeedback games in the study includes more than just children with ADHD syndrome. The other kids without the syndrome are also considered. Thus, to conduct the study, 3rd graders, with or without special education needs, were both arranged to participate the two sets of attention fostering training games. In the games, the neurofeedback information was presented by images. During the process, there will be information generated immediately for training provided as feedback. At the end, through the result of meter reading from EEG, the EEG parameter of the target players from the two sets of games was further analyzed and compared so as to study the influences and effectiveness of the proposed two sets of games applied to different groups of children. The statistically significant performance improvement after playing a number of game sessions demonstrates the effectiveness of the proposed games in enhancing their attention fostering.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與目標 3
1.3 研究範圍與限制 3
1.4 論文架構與流程 4
第二章 文獻探討 6
2.1腦波領域研究 6
2.1.1腦波圖 6
2.1.2腦波頻段與其代表意義 7
2.1.3腦機互動介面 10
2.1.4腦波儀 11
2.2兒童專注力 15
2.3神經回饋訓練 17
2.4 腦機介面案例分析 18
2.5 小結 22
第三章 研究方法與實驗設計 23
3.1 研究流程 23
3.2 前導研究 23
3.2.1 腦波遊戲與其操作分析 23
3.2.2小結 30
3.3腦波專注訓練遊戲設計 33
3.3.1 腦波神經回饋原理 33
3.3.2 腦機介面傳遞途徑 35
3.3.3腦波專注訓練遊戲架構 36
3.3.4腦波專注訓練遊戲關卡設計 37
3.4 實驗設計 52
3.4.1實驗對象 53
3.4.2研究設備及資源 53
3.4.3實驗操作 54
3.4.4資料分析 59
第四章 研究結果與討論 62
4.1. 受測者基本資料 62
4.2. 遊戲實驗觀察結果及改善建議 63
4.3 腦波遊戲腦波數值資料分析 65
4.3.1實驗一: 第一款腦波遊戲 65
4.3.2實驗二: 第二款腦波遊戲 69
4.3.3實驗三: 三天成果專注度分析 80
4.4實驗總結 84
第五章 結論與建議 86
5.1腦波專注訓練遊戲設計建議 86
5.2後續研究建議 87
參考文獻 89
附錄 95
曾世杰,2011,遊戲經驗對於意念控制遊戲績效的影響之研究,碩士學位論文,南台科技大學多媒體與電腦娛樂科學系。
林崇德,1995。發展心理學,人民教育出版社,第310-330頁。
林玉雯、黃台珠、劉嘉茹,2010,「課室學習專注力之研究—量表發展與分析應用」,科學教育學刊,第18卷第2期,第107-129頁。
姜琇森、蕭國倫、吳哲維,2013,以腦波特徵為基礎之專注力診斷與訓練系統,國立臺中科技大學資訊管理系。
傅娟、寧新寶、司峻峰,2003,「腦電生物反饋儀的設計與實現」,微處理機,第25卷第2期,第62-64頁。
林宜親、李冠慧、宋玟欣、柯華葳、曾志朗、洪蘭、阮啟弘,2011,「以認知神經科學取向探討兒童注意力的發展和學習之關聯」,教育心理學報,第42卷第3期,第517-542頁。
陳坤顯、何淑君,2013,「腦波儀研究在各領域之應用」,TANET台灣網際網路研討會論文集。
陳金鈴、唐詠雯、周永豐、林家煜、張念喬,2015,「結合腦波儀改善過動症狀的評估系統與遊戲開發」,資訊科技國際研討會暨民生電子論壇電子全文論文集,第133-139頁。
簡佑宏、陳建雄、黃室苗、張文德、江潤華,2005,「運用腦波測量儀量測聽覺情緒反應」,中原學報,第33卷第1期,第123-131頁。

Barkley R. A., Fischer M., Edelbrock C. S., & Smallish L. (1990). The Adolescent Outcome of Hyperactive Children Diagnosed by Research Criteria: I. An 8-year Prospective Follow-up Study. Journal of the American Academy of Child and Adolescent Psychiatry, vol. 29, no. 4, pp. 546-557.
Chang Y. C. & Huang S. L.(2012). The Influence of Attention Levels on Psychophysiological Responses. International Journal of Psychophysiology, vol. 86, no. 1, pp. 39-47.
Egner T. & Gruzelier J. H. (2011). Learned Self-Regulation of EEG Frequency Components Affects Attention and Event-Related Brain Potentials in Humans. Neuroreport, vol. 12, no. 18, pp. 4155-4159.
Finke A., Lenhardt A., & Ritter H. (2009). The MindGame: A P300-Based Brain–Computer Interface Game. Neural Networks, vol. 22, no. 9, pp. 1329–1333.
Gerven M., Farquhar J., Schaefer R., Vlek R., Geuze J., Nijholt A., Ramsey N., Haselager P., Vuurpijl L., Gielen S., & Desain P. (2009). The Brain-Computer Interface Cycle. Journal of Neural Engineering, pp. 1–10.
Horn W. F. & Packard T. (1985). Early Identification of Learning Problems: A Meta-Analysis. Journal of Educational Psychology, vol. 77, no. 5, pp. 597–607.
Jaakko M. & Robert P. (1995). Bioelectromagnetism-Principles and Applications of Bioelectric and Biomagnetic Fields. New York, Oxford, Oxford University Press.
Klimesch W. (2012). Alpha-Band Oscillations, Attention, and Controlled Access to Stored Information. Trends in Cognitive Sciences, vol. 16, no. 12, pp. 606-617.
Krepki R., Blankertz B., Curio G., & Muller K.R. (2007). The Berlin Brain-Computer Interface (BBCI) - Towards a New Communication Channel for Online Control in Gaming Applications. Multimedia Tools and Applications, vol. 33, no. 1, pp. 73–90.
Levine S. P., Huggins J. E., BeMent S. L., Kushwaha R. K., Schuh L. A., Rohde M. M., Passaro E. A., Ross D. A., Elisevich K. V., & Smith B. J.. (2000). A Direct Brain Interface Based on Event-Related Potentials. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, vol. 8, no. 2, pp. 180-185.
Posner M. I., & Rothbart M. K. (2007). "Research on Attention Networks as a Model for the Integration of Psychological Science," Annual Review of Psychology, vol. 58, pp. 1-23.
Neidermeyer E. (1999). The normal EEG of the waking adult. Electroencephalography:
Basic Principles, Clinical Applications and Related Fields, pp. 149-173.
Poupard L., Sartène R., & Wallet J.C. (2001). Scaling Behavior in β-wave Amplitude Modulation and Its Relationship to Alertness. Biological Cybernetics, vol. 85, no. 1, pp. 19-26.
Reuderink B., Nijholt A., & Poel M. (2009). Affective Pacman: A Frustrating Game for Brain-Computer Interface Experiments. Intelligent Technologies for Interactive Entertainment, vol. 9, pp. 221-227.
Rueda M. R., Rothbart M. K., McCandliss B. D., Saccomanno L., & Posner M. I. (2005). Training, Maturation, and Genetic Influences on the Development of Executive Attention. Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14931-14936.
Sauseng P., Hoppe J., Klimesch W., Gerloff C., and Hummel F. C. (2007). Dissociation of Sustained Attention from Central Executive Functions: Local Activity and Interregional Connectivity in the Theta Range. European Journal of Neuroscience, vol. 25, no. 2, pp. 587-593.
Sung Y., Cho K., & Um K. (2012). A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors. Sensors (Basel), vol. 12, no. 11, pp. 15671-15688.
Swanson J., Posner M. I., Cantwell D., Wigal S., Crinella F., Filipek P., Emerson J., Tucker D., Nalcioglu O. P. (1998). The Attentive Brain. Cambridge, MA, US: The MIT press.
Swartz B. E. (1998). The Advantages of Digital Over Analog Recording Techniques. Electroencephalography and Clinical Neurophysiology, vol 106, Issue 2, pp. 113-117.
Vecchiato G., Toppi J., Astolfi L., De Vico Fallani F., Cincotti F., Mattia D., Bez F., & Babiloni F. (2011). Spectral EEG Frontal Asymmetries Correlate with the Experienced Pleasantness of TV Commercial Advertisements. Medical and Biological Engineering and Computing, vol. 49, no. 5, pp. 579-583.
Vidal J. J. (1973). Toward Direct Brain-Computer Communication. Annual Review of Biophysics and Bioengineering, vol. 2, pp. 157–80.
Walker, P (1999) Chambers Dictionary of Science and Technology. Edinburgh: Chambers press.
Williamson J., Murray-Smith R., Blankertz B., Krauledat M., & Muller K. R. (2009). Designing for Uncertain, Asymmetric Control: Interaction Design for Brain–Computer Interfaces. International Journal of Human-Computer Studies, vol. 67, Issue 10, pp. 827–841.
電子全文 電子全文(網際網路公開日期:20210810)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top