(3.92.96.236) 您好!臺灣時間:2021/05/07 14:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳冠霖
研究生(外文):Kuan-Lin Wu
論文名稱:動態調變電壓激發角最佳化冰箱耗能
論文名稱(外文):Dynamic modulation of voltage excitation angle to optimize energy consumption of the refrigerators
指導教授:莊賀喬莊賀喬引用關係
指導教授(外文):Ho-Chiao Chuang
口試委員:李春穎潘正堂
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:冷藏冰箱、電壓激發角、雙向性三極閘流體、耗能、節能率
外文關鍵詞:Refrigeratorvoltage excitation angleTriacenergy consumptionenergy saving
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將動態調變電壓激發角技術(Dynamic modulation of voltage excitation angle)應用在冷藏冰箱上,使冷藏冰箱在最佳耗能狀態下運轉,此技術是利用半導體元件雙向性三極閘流體 (Tri-electrode ac switch, Triac) 作為調控電壓激發角之元件,並開發出新型節能控制器 (novel energy saving controller, NESC),以冷藏冰箱作為實驗負載設備,主要是因為冷藏設備必須全天24小時運轉,而人類對冷藏設備帶來的便利性依賴相當高,但是冷藏設備的高耗電量也成為許多產業的成本負擔。因此透過本研究新型節能控制器能改善壓縮機耗能過多的問題,並達到節能的效果。實驗目的主要驗證此新型節能控制器的可行性,在維持冷藏冰箱未改變製冷能力的條件下,達到節能的目標。實驗設計紀錄1小時靜態關門測試與模擬使用狀態的動態開關門測試,分別得到節能率20.48%與12.88%。冷藏冰箱是24小時運轉不停機的設備,在安裝新型節能控制器後,紀錄一天最佳耗能為6.597kWh 24h-1,與市電耗能比較下降22.41%。本研究以電流、功率、冰箱內部溫度與濕度和壓縮機機殼溫度為實驗架構參數,控制邏輯是經由感測電流作為回授訊號再決定電壓調變範圍,最後比較冷藏冰箱內部溫濕度變化,驗證製冷能力未被改變。本研究新型節能控制器接法設計為外掛串聯式,不改變原始冰箱內部的結構,安裝便利,使未來廣泛推廣此新型節能控制器的可行性更為增加。
In this study, we applied a dynamic modulation of voltage excitation angle technology, to a refrigerator so that the refrigerator operates at an optimum energy consumption. This technique utilizes a semiconductor element, Tri-electrode AC switch (TRIAC), as a regulatory element for modulating the voltage excitation angle. Thus, a novel energy saving controller (NESC) was successfully developed, and a refrigerator was used as the experimental load equipment. Refrigerators are normally operated 24 hours a day, 365 days per year; so the high power consumption of refrigerators has become a cost burden for many industries. Therefore, through this study, the problem of excessive energy consumption of refrigerators can be improved by the proposed NESC and thus, achieve the energy-saving effect. In this study, we first validated the feasibility of the proposed NESC; tests were performed where the door is closed for one hour and a dynamic simulation of normal use where the door is opened and closed periodically in one hour. The energy-saving rates obtained were 20.48% and 12.88%, respectively. In addition, a long period of one day tests on refrigerator was also conducted w/o NESC, and the best power consumption was measured at 6.597kWh 24h-1. An energy-saving rate of 22.41% was achieved. In this study, current, power, temperature and humidity inside the refrigerator compartment, and the compressor casing temperature are considered as the experimental parameters and were monitored during the test. The sensing current is taken as the feedback signal to determine the voltage modulation range. The proposed NESC is designed to be connected externally in series, without changing the original structure inside the refrigerator and it is easy to install.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 ix
圖目錄 x
第一章 緒 論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 論文架構 3
第二章 基礎理論與文獻回顧 4
2.1 電能基本理論 4
2.1.1 單相電力基本理論 4
2.1.2 新型節能控制器基本原理 5
2.1.3 動態電壓調變原理 6
2.2 冷凍冷藏設備節能技術發展 9
2.2.1 冷凍冷藏設備耗能議題 9
2.2.2 冷凍冷藏設備節能文獻探討 11
2.3 Triac研究發展現況 16
第三章 實驗方法與流程 18
3.1 實驗設備 18
3.1.1 新型節能控制器元件 18
3.1.2 實驗檢測設備與儀器 20
3.2 實驗流程 25
3.2.1 實驗設備架設 25
3.2.2 新型節能控制器連接法 29
3.2.3 實驗參數 30
3.2.4 節能效益計算公式 32
3.3 控制邏輯 33
3.3.1 程式邏輯 33
3.3.2 保護程式 35
第四章 結果與討論 36
4.1 電壓與功率因數控制 36
4.1.1 功率因數變化之影響 36
4.1.2 電壓激發角之變化 37
4.2 靜態關門測試結果 39
4.3 卸載狀態之時間拉長原因探討 42
4.4 動態開關門測試結果 44
4.5 長時間穩定性測試結果 46
4.6 節能效益試算 47
4.7 新型節能控制器與市售電容器比較 48
4.8 數據認證與成果發表 50
第五章 結 論 52
未來展望 52
參考文獻 53
[1]經濟部能源局,103年能源統計手冊,2015。
[2]經濟部能源局,2014非生產性質行業能源查核年報, 2014。
[3]李魁鵬、郭華生「商業冷凍冷藏Q&A節能技術手冊」,財團法人台灣綠色生產力基金會,2008
[4]財團法人台灣綠色生產力基金會,冷凍冷藏節能應用技術手冊,2012。
[5]J. M. Belman-Flores, J. M. Barroso-Maldonado, A. P. Rodriguez-Munoz, G. Camacho-Vazquez. “Enhancements in domestic refrigeration, approaching a sustainable refrigerator–A review.” Renewable and Sustainable Energy Reviews 51 (2015) 955-968.
[6]J. K. Kim, J. H. Jeong. “Performance characteristics of a capacity-modulated linear compressor for home refrigerators.” International Journal of Refrigeration 36 (2013) 776-785.
[7]R. Saidur, S. Mekhilef, M. B. Ali, A. Safari, H.A. Mohammed. “Applications of variable speed drive (VSD) in electrical motors energy savings.” Renewable and Sustainable Energy Reviews 16 (2012) 543-550.
[8]R. Saidur, N.A. Rahim, M. Hasanuzzaman. “A review on compressed-air energy use and energy savings.” Renewable and Sustainable Energy Reviews 14 (2010) 1135-1153.
[9]O. Ekren, S. Celik, B. Noble, R. Krauss. “Performance evaluation of a variable speed DC compressor.” International Journal of Refrigeration 36 (2013) 745-757.
[10]K. Liang, R. Stone, G. Davies, M. Dadd, P. Bailey. “Modelling and measurement of a moving magnet linear compressor performance.” Energy 66 (2014) 487-495.
[11]J. K. Kim, J. B. Kim. “Modulation characteristics of a linear compressor for evaporating and condensing temperature variations for household refrigerators.” International Journal of Refrigeration 40 (2014) 370-379.
[12]P. Bansal, E. Vineyard, O. Abdelaziz. “Advances in household appliances-A review.” Applied Thermal Engineering 31 (2011) 3748-3760.
[13]T. M. I. Mahlia, R. Saidur. “A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator–freezers.” Renewable and Sustainable Energy Reviews 14 (2010) 1888-1900.
[14]F. Ghadiri, M. Rasti. “The effect of selecting proper refrigeration cycle components on optimizing energy consumption of the household refrigerators.” Applied Thermal Engineering 67 (2014) 335-340.
[15]X. Wang, J. Yu. “An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer.” Energy 93 (2015) 202-209.
[16]W. J. Yoon, H. W. Jung, H. J. Chung, Y. Kim. “Performance optimization of a two-circuit cycle with parallel evaporators for a domestic refrigerator–freezer.” International Journal of refrigeration 34 (2011) 216-224.
[17]M. Visek, C. M. Joppolo, L. Molinaroli, A. Olivani. “Advanced sequential dual evaporator domestic refrigerator/freezer: System energy optimization.” International Journal of Refrigeration 43 (2014) 71-79.
[18]S. Bi, L. Shi, L. Zhang. “Application of nanoparticles in domestic refrigerators.” Applied Thermal Engineering 28 (2008) 1834-1843.
[19]S. Bi, K. Guo, Z. Liu, J. Wu. “Performance of a domestic refrigerator using TiO 2-R600a nano-refrigerant as working fluid.” Energy Conversion and Management 52 (2011) 733-737.
[20]B. Gin, M. M. Farid, P. K. Bansal. “Effect of door opening and defrost cycle on a freezer with phase change panels.” Energy Conversion and Management 51 (2010) 2698-2706.
[21]W. L. Cheng, B. J. Mei, Y. N. Liu, Y. H. Huang, X. D. Yuan. “A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation.” Energy 36 (2011) 5797-5804.
[22]I. Colak, E. Kabalci, R. Bayindir. “Review of multilevel voltage source inverter topologies and control schemes.” Energy Conversion and Management 52 (2011) 1114-1128.
[23]A. M. Amjad, Z. Salam. “A review of soft computing methods for harmonics elimination PWM for inverters in renewable energy conversion systems.” Renewable and Sustainable Energy Reviews 33 (2014) 141-153.
[24]E. Butun, T. Erfidan, S. Urgun. “Improved power factor in a low-cost PWM single phase inverter using genetic algorithms.” Energy Conversion and Management 47 (2006) 1597-1609.
[25]R. Ortega, E. Figueres, G. Garcera, C. L. Trujillo, D. Velasco. “Control techniques for reduction of the total harmonic distortion in voltage applied to a single-phase inverter with nonlinear loads: Review.” Renewable and Sustainable Energy Reviews 16 (2012) 1754-1761.
[26]J. Faiz, A. Jafarian, M. Neekzad. “PSPICE simulation of a capacitor start and triac start single phase induction motor during steady state and transient operations and its experimental verification.” Energy Conversion and Management 44 (2003) 479-495.
[27]G. S. Ilango, K. Samidurai, M. Roykumar, K. Thanushkodi. “Energy efficient power electronic controller for a capacitor-run single-phase induction motor.” Energy Conversion and Management 50 (2009) 2152-2157.
[28]S. C. Moon, G. B. Koo, G. W. Moon. “Dimming-feedback control method for TRIAC dimmable LED drivers.” IEEE Transactions on Industrial Electronics 62 (2015) 960-965.
[29]J. C. W. Lam, P. K. Jain. “A TRIAC dimmable single-switch electronic ballast with power factor correction and lamp power regulation.” IEEE Transactions on Power Electronics 29 (2014) 5472-5485.
[30]台灣電力公司,103年度電力排放係數。
[31]經濟部能源局,我國燃料燃燒二氧化碳排放統計,2015。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔