(3.235.139.152) 您好!臺灣時間:2021/05/08 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳丞祥
研究生(外文):Cheng-Xiang Wu
論文名稱:以光輔助電化學蝕刻技術結合超臨界電鍍製程製作陣列式微銅柱結構
論文名稱(外文):Fabrication of micro copper pillar structured arrays by using photo-assisted electrochemical etching technique and supercritical electroplating process
指導教授:莊賀喬莊賀喬引用關係
口試委員:李春穎楊啟榮
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:矽通孔、光輔助電化學蝕刻、超臨界電鍍、三維積體電路、封裝
外文關鍵詞:Photoelectrochemical etchingSupercritical-CO2Copper electroplatingHigh aspect ratioTSV
相關次數:
  • 被引用被引用:3
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用光輔助電化學蝕刻 (Photo-assisted electrochemical etching),蝕刻出高深寬比之陣列式孔洞,並透過研磨製程形成矽通孔(Through Silicon Via),再利用超臨界電鍍充填,並證明超臨界電鍍可應用於高深寬比之電鍍填充。利用超臨界電鍍技術的優勢(1)低表面張力(2)晶粒細化(3)電鍍時間大幅降低等優點,且電鍍高深寬比結構會面臨的氫氣泡問題;在超臨界電鍍優勢下並無須使用添加劑,在製程上不但節省成本且可避免因加入添加劑在製程上可能造成的不良影響,相較於一般電鍍製程,超臨界電鍍製程不但電鍍時間大幅降低亦能達到優質電鍍的效果。而在半導體產業著重高密度設計的前提下,本研究提供精簡的製程方法且達到高深寬比結構的垂直導電層,若未來半導體產業發展需高深寬比垂直導電層之製程,則本研究利用超臨界電鍍快速製造的優勢將得以應用。本研究將矽晶圓片利用半導體製程技術,黃光、薄膜及蝕刻,製作出可用於光輔助電化學蝕刻之晶片;本研究使用光源為50 W之鹵素燈,利用光子照射激勵電洞形成空間電荷區造成垂直蝕刻效果,並以氫氟酸濃度2.5 wt%、攪拌450 rpm、溫度工作在室溫、添加劑-四丁基高氯酸銨(TBAP,Tetrabuthyl ammonium percholate) 1 g及歐姆接觸層為鉻/金(Cr/Au)且厚度為(20 Å/40 Å)等製程參數下完成深寬比為1:45之矽通孔結構。
In this study the photo-assisted electrochemical etching (PAECE) was used for the fabrication of high aspect ratio hole array, formed into through silicon via (TSV) by mechanical polishing, and were filled by supercritical electroplating technique, to prove that supercritical electroplating can indeed be applied for filling of high aspect ratio structures. Supercritical electroplating technique displays advantages such as (1) breaking surface tension of electrolyte, (2) grain refinement, (3) great reduction of electroplating time. Moreover, when performing traditional electroplating of high aspect ratio structures, the issue of hydrogen evolution is encountered; however it can improved on by application of supercritical electroplating. Additionally, there is no need for addition of surfactants under supercritical electroplating technique, so it not only can reduce costs but also avoid the adverse effects of surfactants over the fabrication process. Supercritical electroplating process can achieve a better electroplating quality in a shortened time when compared to the traditional electroplating. With the semiconductor industry steering towards high density designs, this study presents a simple fabrication method to achieve highly conductive high aspect ratio vertical structures. If in the future the development of semiconductor industry requires fabrication methods for this kind of structures, the supercritical electroplating method described in this study can be considered due to its high fabrication speed and its other various advantages. In this study, semiconductor processes such as clean room, thin film deposition and etching were performed on silicon wafers to fabricate chips usable in PAECE; the light source used was a 50W halogen lamp, holes are excited by irradiating photons to create the space charge region (SCR) which causes the vertical etching effect. Our discussion of adjusting fabrication parameters and their influence over the etching result includes HF concentration (2.5wt%), agitation speed (450rpm), temperature (room temperature), Tetrabutylammonium perchlorate (TBAP) content (1g), and ohmic contact layer thickness (20Å/40Å), with the goal of producing structures with aspect ratio of 1:45.
目 錄

摘 要. ii
ABSTRACT iii
誌 謝…. v
目 錄… vi
表目錄. ix
圖目錄 ……………………………………………………………..……………..x
第一章 前言 1
1.1三維積體電路 1
1.2光輔助電化學蝕刻 4
1.3超臨界電鍍 5
1.4研究動機與目的 6
1.5 論文架構 7
第二章 基礎理論文獻回顧 8
2.1 矽通孔技術 8
2.1.1通孔形成在前段之製程 8
2.1.2通孔形成在後段之製程 9
2.1.3通孔形成在中段之製程 9
2.2 TSV文獻 10
2.3蝕刻 12
2.3.1乾式蝕刻 12
2.3.2濕式蝕刻 13
2.4 光輔助電化學理論文獻回顧 14
2.4.1 Beale模型 16
2.4.2 Zhang模型 19
2.4.3 Lehmann模型 22
2.5空間電荷區 26
2.6光輔助電化學蝕刻 28
2.7光輔助電化學蝕刻電壓 29
2.8電化學原理 31
2.8.1電化學沉積 31
2.8.2電鍍理論 32
2.8.3電化學結晶成長過程 35
2.8.4鍍層結構與性質 37
2.9超臨界相 39
2.9.1超臨界流體 39
2.9.2超臨界二氧化碳 39
2.9.3乳化理論 40
2.9.4 超臨界電鍍文獻回顧 42
2.9.5 電鍍銅 43
第三章 矽通孔晶片製作 44
3.1 晶片製作 45
3.2晶片標準清潔 47
3.3微影製程 48
3.4物理氣相沉積製程 51
3.5光輔助電化學蝕刻製程 53
3.5.1光輔助電化學蝕刻製程參數設定 54
3.5.2光輔助電化學蝕刻流程 56
3.5.3光輔助電化學蝕刻儀器架構 57
3.6超臨界電鍍製程 58
3.6.1超臨界電鍍製程參數設定 59
3.6.2超臨界電鍍流程 60
3.6.3實驗儀器架構圖 62
3.7檢測儀器 63
第四章 結果與討論 64
4.1簡易製程流程 64
4.2 HF濃度對蝕刻之影響 65
4.3蝕刻液溫度及攪拌對蝕刻形貌之影響 68
4.4添加劑TBAP對蝕刻孔徑寬度之影響 70
4.5歐姆接觸層對蝕刻之影響 73
4.6超臨界二氧化碳電鍍銅製程 83
第五章 結論 85
5.1陣列式矽通孔結構之最佳參數 85
5.2未來展望 85
參考文獻 86

參考文獻

[1]Gordon E. Moore, “Cramming more components onto integrated circuits”, Electronics 38 (1965) 114-117.
[2]http://www.3dmgame.com/hardware/201507/3510910.html/
[3]吳尚祁,台灣半導體產業3D IC技術選擇模式,碩士論文,國立交通大學管理學院科技管理學程,新竹,2012.
[4]http://zh.wikipedia.org/wiki/%E4%B8%89%E7%B6%AD%E6%99%B6%E7%89%87
[5]http://www.soccentral.com/results.asp?CatID=488&EntryID=34804
[6]http://www.2cm.com.tw/coverstory_content.asp?sn=0902250007
[7]M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew and A.G. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon”, Journal of Crystal Growth 73 (1985) 622-636.
[8]M.I.J. Beale, N.G. Chew, M.J. Uren, A.G. Cullis and J.D. Benjamin, “Microstructure and formation mechanism of porous silicon”, Applied Physics Letters 46 (1985) 86-88.
[9]B. Berche, M. Henkel and R. Kenna, “Critical phenomena : 150 years since Cagniardh de la Tour”, Journal of Physical Studies 13 (2009) 3201-3209.
[10]H. Yoshida, M. Sone, A. Mizushima, K. Abe, X.T. Tao, S. Ichihara and S. Miyata, “Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution”, Journal of Chemistry Letters 31 (2002) 1086-1087.
[11]H. Yoshida, M. Sone, A. Mizushima, H. Yan, H. Wakabayashi, K. Abe, X.T. Tao, S. Ichihara and S. Miyata, “Application of emulsion of dense carbon dioxide in electroplating solution with nonionic surfactants for nickel electroplating”, Surface and Coatings Technology 173 (2003) 285-292.
[12]T.F.M. Chang, T. Tasaki, C. Ishiyama and M. Sone, “Void-free micro-pattern of nickel fabricated by electroplating with supercritical carbon dioxide emulsion”, Microelectronic Engineering 88 (2011) 2225-2228.
[13]V.C. Nguyen, C.Y. Lee, L. Chang, F.J. Chen and C.S. Lin, “The Relationship between Nano Crystallite Structure and Internal Stress in Ni Coatings Electrodeposited by Watts Bath Electrolyte Mixed with Supercritical CO2”, Journal of The Electrochemical Society 159 (2012) 393-399.
[14]V.C. Nguyen, C.Y. Lee ,F.J. Chen, C.S. Lin and T.Y. Liu, “Study on the internal stress of nickel coating electrodeposited in an electrolyte mixed with supercritical carbon dioxide”, Surface and Coatings Technology 206 (2012) 3201-3207.
[15]L. Yu, “Study of TSVs induced transistor variation”, Master thesis, Massachusetts Institute of Technology, U.S. (2011).
[16]T. Ohba, N. Maeda, H. Kitada, K. Fujimoto, K. Suzuki, T. Nakamura, A. Kawai and K. Arai, “Thinned wafer multi-stack 3DI technology”, Microelectronic Engineering 87 (2010) 485-490.
[17]N.T. Nguyen, E. Boellaard, N.P. Pham, V.G. Kutchoukov, G. Craciun and P.M. Sarro, “Through-wafer copper electroplating for three-dimensional interconnects”, Journal of Micromechanics and Microengineering 12 (2002) 395-399.
[18]P. Dixit and J. Miao, “Aspect-Ratio-Dependent Copper Electrodeposition Technique for Very High Aspect-Ratio Through-Hole Plating”, Surface and Coatings Technology 173 (2003) 285-292.
[19]http://www2.ess.nthu.edu.tw/~fangang/download/Micro%20System%20Fabrication%20and%20Experiment/lec7-Dry etching technique.doc
[20]http://blog.xuite.net/bwwiiiychen/BW/204527793-CVD%E5%96%AE%E6%99%B6%E9%91%BD%E7%9F%B3%E5%88%80%E5%85%B7
[21]A. Uhlir, “Electrolytic shaping of germanium and silicon”, Bell System Technical Journal 35 (1956) 333-347.
[22]X.G. Zhang, S.D. Collins and R. L. Smith, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution”, Journal of the Electrochemical Society 136 (1989) 1561-1565.
[23]X.G. Zhang, “Mechanism of Pore Formation on n‐Type Silicon”, Journal of the Electrochemical Society 138 (1991) 3750-3756.
[24]V. Lehmann and H. Föll, “Formation mechanism and properties of electrochemically etched trenches in n‐type Silicon”, Journal of the Electrochemical Society 137 (1990) 653-659.
[25]S.M. Sze, Physics of Semiconductors Devices, Wiley, New York, (1981).
[26]V. Lehmann, The electrochemistry of silicon (2002).
[27]莊鴻緯,影響後超臨界二氧化碳電鍍鎳之因子與機械性質之研究,碩士論文,國立台北科技大學製造科技研究所,台北,2013.
[28]蘇癸陽,實用電鍍理論與實際,復文書局,1990.
[29]楊聰仁,電鍍鎳與無電鍍鎳實驗,台中市,逢甲大學材料科學與工程學系.
[30]M. Schlesinger and M. Paunovic, Modern Electroplating, Wiley-Interscience, (2000).
[31]張允誠、胡如南、向榮,電鍍手冊(上),國防工業出版社,北京市,1997.
[32]李鴻年、張紹恭、張炳乾、宋子玉,實用電鍍工藝,國防工業出版社,北京市,1990.
[33]N. Kanani, Electroplating-basic Principles, Process and Practice Elsevier, (2004).
[34]莊晏綺,在乳化超臨界二氧化碳流體中界面活性劑對鎳磷電鍍的影響,碩士論文,國立成功大學,台南,2011.
[35]T.F.M. Chang, C. Ishiyama, T. Sato and M. Sone, “Quantitative study on removal of SU-8 photoresist patterns by supercritical CO2 emulsion”, Microelectronic Engineering 110 (2013) 204-206.
[36]http://www.tst.tw/technology-more.php?Key=1
[37]J.R. Williams and A.A. Clifford, “Supercritical Fluids and Their Applications in Biotechnology and Related Areas”, Molecular Biotechnology 22 (2002) 263-286.
[38]P. Raveendran, Y. Ikushima and S.L. Wallen, “Polar Attributes of Supercritical Carbon Dioxide”, Accounts of Chemical Research 38 (2005) 478-485.
[39]曹恒光、連大成,淺談微乳化,物理雙月刊 23 (2001) 488-493.
[40]H. Yoshida, M. Sone, H. Wakabayashi, H. Yan, K. Abe, X.T. Tao, A. Mizushima, S. Ichihara and S. Miyata, “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film”, Thin Solid Films 446 (2004) 194-199.
[41]H. Yan, M. Sone, A. Mizushima, T. Nagai, K. Abe, S. Ichihara and S. Miyata, “Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant”, Surface and Coatings Technology 187 (2004) 86-92.
[42]M.S. Kim, J.Y. Kim, C.K. Kim and N.K. Kim, “Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2”, Chemosphere 58 (2005) 459-465.
[43]N. Shinoda, T. Shimizu, T.F.M. Chang, A. Shibata, M. Sone, “Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles”, Thin Solid Films 529 (2013) 29-33.
[44]T.F.M. Chang, T. Shimizu, C. Ishiyama and M. Sone, “Effects of pressure on electroplating of copper using supercritical carbon dioxide emulsified electrolyte”, Thin Solid Films 529 (2013) 25-28.
[45]N. Shinoda, T. Shimizu, T.F.M. Chang, A. Shibata and M. Sone, “Filling of nanoscale holes with high aspect ratio by Cu electroplating using suspension of supercritical carbon dioxide in electrolyte with Cu particles”, Microelectronic Engineering 97 (2012) 126-129.
[46]F. Chamran, Y. Yeh, H.S. Min, B. Dunn and C.J. Kim, “Fabrication of high-aspect-ratio electrode arrays for three-dimensional microbatteries”, Journal of Microelectromechanical Systems 16 (2007) 844-852.
[47]G. Sun, J.I. Hur, X. Zhao and C.J. Kim, “Fabrication of very-high-aspect-ratio micro metal posts and gratings by photoelectrochemical etching and electroplating”, Journal of Microelectromechanical Systems 20 (2011) 876-884.
[48]S. Izuo, O. Hiroshi, P.J. French and K. Tsutsumi, “A novel electrochemical etching technique for n-type silicon”, Sensors and Actuators A: Physical 97 (2002) 720-724.
[49]Z. Zhao, J. Guo, Y. Lei and H. Niu, “Photoelectrochemical etching of uniform macropore array on full 5-inch silicon wafers”, Journal of Semiconductors 31 (2010) 076001.
[50]羅嘉佑,晶圓穿孔陣列之光輔助電化學蝕刻特性研究,碩士論文,國立臺灣師範大學,台北,2008.
[51]賴威宏,以超臨界電鍍銅應用於具矽穿孔晶片製作之製程參數探討,碩士論文,國立國立臺北科技大學,台北,2014.
[52]http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
[53]H.C. Kim, D.H. Kim and K. Chun, “Photo-assisted electrochemical etching of a nano-gap trench with high aspect ratio for MEMS applications”, Journal of Micromechanics and Microengineering 16 (2006) 906-913.
[54]V. Lehmann, “The Physics of Macropore Formation in Low Doped n‐Type Silicon”, Journal of the Electrochemical Society 140 (1993) 2836-2843
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔