跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳金富
研究生(外文):Jin-Fu Chen
論文名稱:陶瓷雷射燒結法之氧化矽粉末粒度對製作陶瓷工件之影響
論文名稱(外文):Affect of Grain size of SiO2 Powder for the Components manufacturing by Ceramic Laser Sintering
指導教授:嚴孝全
指導教授(外文):Hsiao Chuan Yen
口試委員:孫殷同施議訓
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
中文關鍵詞:積層製造、二氧化矽粉末、基準工件、雷射燒結
外文關鍵詞:Additive ManufacturingSiO2 powderbenchmarkLaser Sintering
相關次數:
  • 被引用被引用:2
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
積層製造技術直接製作形狀複雜之陶瓷工件,而製程中陶瓷基材的不同,將會影響到陶瓷工件之機械性質。
本文研究陶瓷粉末粒度大小對製作陶瓷工件之影響。使用2 μm和10 μm之氧化矽粉末為結構材料。在相同之製作條件下,以兩種不同粉末粒度製作試片與工件來觀察表面粗糙度、緻密度與三點抗彎強度的差異性。設計並製作具有不同特徵的基準工件。最後依特徵可行性製作2.5D及3D複雜工件。
實驗結果顯示,以細粉末作出之工件,生胚和燒結後的表面粗糙度較佳;機械性質方面,收縮率細粉末之工件略大於粗粉末,緻密度與抗彎強度亦比粗粉末製作之陶瓷工件高。在基準工件的特徵可行性中,細粉末可製作出比粗粉末工件更微細緻的特徵,但粗細粉末所製之斜面,階梯現象的產生並無法因粒度的改變,而有所改善。在具有特徵之複雜工件以及因燒結溫度的改變所產生之影響,都完整的呈現於本研究。
Additive manufacturing can fabricate ceramic components with complex shape directly. However, the mechanical properties of the component can be affected with structure material of ceramics.
The aim of this study is to investigate the influence of particle size of the ceramic powder to the fabrication of the ceramic components. 2 μm and 10 μm of SiO2 powder was employed as the structural materials. Under the same manufacturing conditions, two different materials were used to fabricate specimens and workpieces to observe the difference of surface roughness, density and flexural strength. A benchmark workpiece with different features was designed and fabricated. Eventually, based on the feasibility of feature fabricating, the complex 2.5D and 3D workpieces were fabricated.
Experimental results revealed that the surface roughness of the green parts and sintered parts manufactured by the fine powder was better than that of the parts made by coarse powder. Comparing to the parts made of the coarse powder, the parts made by the fine powder also possesses the better mechanical properties, shrinkage rate, density and flexural strength. The benchmark workpiece revealed that the feature made of the fine powder could be smaller than that made of coarse powder. Nevertheless, the step affect was not improved with different particle size. The fabrication of the workpiece with complex shape and the influence of sintering temperature were completely presented in current study.
目 錄
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究方法 2
1.4 論文架構 2
第二章 文獻回顧 3
2.1 快速原型技術介紹 3
2.1.1 Stereolithography (SL) 3
2.1.2 Laminated Object Manufacturing (LOM) 4
2.1.3 Fused Deposition Modeling (FDM) 5
2.1.4 Three Dimensional Printing (3DP) 7
2.1.5 陶瓷雷射快速原型技術 7
2.1.5.1 Selective Laser Sintering (SLS) 7
2.1.5.2 Ceramic Laser Sintering (CLS) 8
第三章 實驗方法 10
3.1 陶瓷快速原型機台介紹 11
3.1.1 雷射裝置 11
3.1.2 鋪層裝置 12
3.1.3 人機介面 16
3.2 漿料備製 17
3.2.1 製程材料 17
3.3 實驗內容 22
3.3.1 製程參數之決定 22
3.3.1.1 材料參數 23
3.3.1.2 雷射掃描參數 24
3.3.2 工件製作 30
3.3.3 非加工件區之生胚廢料移除 30
3.3.4 燒結溫度曲線設定 30
3.3.5 工件收縮率與表面粗糙度量測 31
3.3.6 工件強度量測 35
3.3.7 基準工件製作與量測 36
3.3.8 複雜工件製作 37
第四章 結果與討論 39
4.1 材料參數 39
4.1.1 粒徑分析 39
4.1.2 漿料黏度 40
4.2 雷射掃描參數 41
4.2.1 雷射功率 41
4.2.2 雷射掃描線寬與線深 42
4.2.3 製程條件 43
4.3 移除非加工區 43
4.4 燒結溫度曲線 46
4.5 工件收縮率與表面粗糙度 48
4.5.1 收縮率 48
4.5.2 緻密度 48
4.5.3 表面粗糙度 49
4.6 工件強度量測 49
4.7 基準工件製作與量測 50
4.8 複雜工件製作 56
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 62

[1]R. F. Pereira & P. J., Bártolo, " Photocrosslinkable materials for the fabrication of tissue-engineered constructs by stereolithography. ", In Tissue Engineering, Springer Netherlands., 2014, pp. 149-178.
[2]J. A. S. Neiman, R. Raman, V. Chan, M. G. Rhoads, M. S. B. Raredon, J. J. Velazquez, ... & L. G. Griffith,. " Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. ", Biotechnology and bioengineering, 112(4), 2015, pp. 777-787.
[3]R. Gmeiner, G. Mitteramskogler, J. Stampfl & A. R. Boccaccini, " Stereolithographic ceramic manufacturing of high strength bioactive glass. ", International Journal of Applied Ceramic Technology, 12(1), 2015, pp.38-45.
[4]P. T. Lan, S. Y. Chou, L. L. Chen & D. Gemmill, " Determining fabrication orientations for rapid prototyping with stereolithography apparatus. ", Computer-Aided Design, 29(1), 1997, pp. 53-62.
[5]S. Liu, F. Ye, L. Liu & Q. Liu, " Feasibility of preparing of silicon nitride ceramics components by aqueous tape casting in combination with laminated object manufacturing. ", Materials & Design, 66, 2015, pp. 331-335.
[6]S. J. Rodrigues, R. P. Chartoff, D. A. Klosterman, M. Agarwala & N. Hecht, " Solid freeform fabrication of functional silicon nitride ceramics by laminated object manufacturing. ", In SFF Symposium, 2000.
[7]C. M. Gomes, C. R. Rambo, A. P. N. De Oliveira, D. Hotza, D. Gouveˆa, N. Travitzky & P. Greil, " Colloidal processing of glass–ceramics for laminated object manufacturing. ", Journal of the American Ceramic Society, 92(6), 2009,pp. 1186-1191.
[8]D. Klosterman, R. Chartoff, G. Graves, N. Osborne & B. Priore, " Interfacial characteristics of composites fabricated by laminated object manufacturing. ", Composites Part A: Applied Science and Manufacturing, 29(9), 1998, pp. 1165-1174.
[9]A. Fadli & C. D. A. Komalasari, " Recent Research and Development in Porous Alumina Ceramics for Biomedical Applications. ", 2015.
[10]J. R. Meakin, D. E. T. Shepherd & D. W. L. Hukins, " Fused deposition models from CT scans, " The British journal of radiology, 2014.
[11]N. Xu, X. Ye, D. Wei, J. Zhong, Y. Chen, G. Xu & D. He, " 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ", ACS applied materials & interfaces, 6(17), 2014, pp. 14952-14963.
[12]W. C. Lee, C. C. Wei & S. C. Chung, " Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining. ", Journal of Materials Processing Technology, 214(11), 2014, pp. 2366-2374.
[13]I. Zein, D. W. Hutmacher, K. C. Tan & S. H. Teoh, " Fused deposition modeling of novel scaffold architectures for tissue engineering applications. ", Biomaterials, 23(4), 2002, pp. 1169-1185.
[14]E. Vorndran, C. Moseke & U. Gbureck, " 3D printing of ceramic implants. ", MRS Bulletin, 40(02), 2015, pp. 127-136.
[15]A. Butscher, M. Bohner, S. Hofmann, L. Gauckler & R. Müller, " Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. ", Acta Biomaterialia, 7(3), 2011, pp. 907-920.
[16]C. Wu, Y. Luo, G. Cuniberti, Y. Xiao & M. Gelinsky, " Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. ", Acta biomaterialia, 7(6), 2011, pp. 2644-2650.
[17]W. E. Katstra, R. D. Palazzolo, C. W. Rowe, B. Giritlioglu, P. Teung & M. J. Cima, " Oral dosage forms fabricated by Three Dimensional Printing. ", Journal of controlled release, 66(1), 2000, pp. 1-9.
[18]T. Czelusniak, F. L. Amorim, C. F. Higa & A. Lohrengel, " Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. ", The International Journal of Advanced Manufacturing Technology, 72(9-12), 2014, pp. 1503-1512.
[19]H. Wirtz, " Selektives Lasersintern von Keramikformschalen für Giessanwendungen. " , Dissertation, RWTH Aachen, 2000, pp. 98-100.
[20]F. H. Liu, " Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation. ", Applied Surface Science, 297, 2014, pp. 1-8.
[21]S. Kumar, A. K. S. Choudhary, A. K. Singh & A. K. Gupta, " A Comparison of Additive Manufacturing Technologies. ", International Journal for Innovative Research in Science and Technology, 3(1), 2016, pp. 147-152.
[22]H. H. Tang, & F. H. Liu, " Ceramic laser gelling. ", Journal of the European ceramic Society, 25(5), 2005, pp. 627-632.
[23]湯華興、黃信紘,「快速陶瓷原型製程」,教育部製造科技技術論文集,臺北,2000。
[24]林大吉,陶瓷雷射快速原型機之鋪層系統改善,碩士論文,國立台北科技大學機電整合研究所,臺北,2010。
[25]嚴孝全,陶瓷雷射快速原型技術之研發,博士論文,國立台北科技大學機電整合研究所,臺北,2007。
[26]何政安,陶瓷雷射燒結法製作陶殼模之分層問題改良,碩士論文,國立台北科技大學製造科技研究所,臺北,2009。
[27]許閔勝,以快速原型技術製作不鏽鋼工件之可行性研究,碩士論文,國立台北科技大學製造科技研究所,臺北,2014。
[28]R. L. Coble, " Sintering Crystalline Solids:II, Experimental Test of Diffusion Models in Powder Compacts, " Journal of Applied Physical, vol. 32, no. 5, 1961, pp. 793-799.
[29]汪建民主編,粉末冶金技術手冊,新竹:中華民國粉末冶金協會出版,全華總經銷,1994。
[30]N.N., " Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. ", American Society for Testing and Materials, Barr Harbor, PA, 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top