跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧羽傑
研究生(外文):Yu-Chieh Teng
論文名稱:以超臨界流體電鍍製程填充電容式微加工超音波轉換器之矽穿孔結構
論文名稱(外文):Filling the through silicon via of capacitive micromachined ultrasonic transducer by supercritical fluid plating process
指導教授:莊賀喬莊賀喬引用關係
指導教授(外文):Ho-Chiao Chuang
口試委員:許志明廖愛禾莊賀喬
口試日期:2016-07-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:超臨界二氧化碳電鍍、後超臨界二氧化碳電鍍、矽穿孔結構
外文關鍵詞:supercritical electroplatingpost-supercritical electroplatingTSV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討利用超臨界二氧化碳電鍍、後超臨界二氧化碳電鍍、傳統電鍍等三種電鍍製程沉積銅金屬薄膜,並探討改變電鍍壓力對鍍層薄膜晶粒大小、優選晶格方向、機械性質以及薄膜片電阻值之影響。並利用這三種電鍍製程進行深寬比為1:7.5的矽穿孔晶片填充,並觀察在不同製程下對TSV銅柱電阻值的影響。由實驗結果得知超臨界二氧化碳電鍍製程的電鍍填充速度為最快約4小時,後超臨界二氧化碳為第二快約5小時,最慢的是傳統電鍍製程約36小時;而TSV銅柱電阻值量測以超臨界二氧化碳電鍍的阻值為最高約5mΩ,第二為後超臨界電鍍填充TSV的電阻值約1.5mΩ,最低為傳統電鍍填充TSV的電阻值約1.1mΩ;晶粒大小方面,以超臨界二氧化碳電鍍製程的晶粒最小約20nm,第二為後超臨界二氧化碳電鍍製程約27nm,最大的為傳統電鍍製程約38nm;機械性質的實驗方面,超臨界二氧化碳電鍍的鍍層硬度為最高約64-67Hv,第二為後超臨界二氧化碳電鍍的鍍層硬度約58-62Hv,最低為傳統電鍍的鍍層約57Hv;超臨界二氧化碳電鍍的鍍層表面粗糙度最平整約0.68-0.85μm,第二為後超臨界二氧化碳電鍍的鍍層表面粗糙度約0.95-1.10μm,傳統電鍍的鍍層最為粗糙約1.15μm;超臨界二氧化碳電鍍的鍍層內應力為三種電鍍製程中最高約45-54MPa,第二為後超臨界電鍍的鍍層約33-41MPa,最低為傳統電鍍的鍍層約30MPa。在薄膜片電阻值的量測中,超臨界二氧化碳電鍍的鍍層薄膜片電阻值為最高約1.3-1.5μΩ-cm,第二為後超臨界二氧化碳電鍍的鍍層約1.2-1.3μΩ-cm,最低為傳統電鍍的鍍層約1.1μΩ-cm。本研究的超臨界流體電鍍製程無須加入添加劑,即可得到最好的晶粒細化效果、最佳的鍍層硬度與良好的縫隙填補能力。
The purpose of this work is to study the application of supercritical CO2 electroplating, post supercritical CO2 electroplating and traditional electroplating processes to fabricate Cu metal thin films, and discuss the effects of adjusting the electroplating pressure over the grain size, preferred grain orientation, mechanical properties and sheet resistance. The second focus point of this work is electroplating of through silicon vias with an aspect ratio of 1:7.5; it was also performed by the three methods presented, and their influence over the electrical resistance of the copper pillar was observed. From the experimental data it is seen that supercritical CO2 process provides the fastest micro-hole filling speed at around 4 hours, the post supercritical CO2 process is the second fastest at around 5 hours and the slowest was the traditional process at around 36 hours. In TSV copper pillar resistance measurements, the supercritical CO2 process displays the highest resistance value at 5mΩ, the second largest was displayed by post supercritical CO2 process at 1.5mΩ and the smallest was displayed by traditional process at around 1.1mΩ. Moreover, grain size produced by the supercritical CO2 process was the smallest calculated to be around 20nm, the second smallest was by post supercritical CO2 process at around 27nm, and the largest was traditional process at around 38nm. Experiments on mechanical properties revealed that thin films produced by supercritical CO2 process have the highest hardness at around 64-67Hv, the second hardest was post supercritical CO2 process at around 58-62Hv and traditional process gives off the lowest hardness at around 57Hv. Additionally, the surface of the films deposited by supercritical CO2 process proved to be the smoothest with a surface roughness of about 0.68-0.85µm, the second smoothest were by the post supercritical CO2 process at around 0.95-1.10µm and the roughest surface was that by traditional process at around 1.15µm. Moreover, the internal stress of the films deposited by the supercritical CO2 process were the highest at around 45-54MPa, the second highest were those by post supercritical CO2 process at around 33-41MPa, and the lowest was found in the films produced by traditional process at around 30MPa. Finally, from sheet resistance measurements it is seen that the highest values were displayed by the supercritical CO2 process at around 1.3-1.5µΩ-cm, the second largest were by the post supercritical CO2 process at around 1.2-1.3 µΩ-cm, and the lowest was by traditional process at 1.1 µΩ-cm. The supercritical electroplating described in this study was performed without the aid of any additives, but could still produce a high degree of grain refinement, high hardness and excellent filling capabilities.
摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 超音波感測器發展 1
第二章 基礎理論與文獻回顧 2
2.1 電化學理論 2
2.1.1 電化學沉積 2
2.1.2 電鍍基本理論 3
2.1.3 電極介面理論 4
2.1.4 電化學的結晶成長過程 5
2.1.5 影響鍍層結構的主要因素 7
2.1.6 鍍層結構與性質 7
2.2 TSV (Through Silicon Via) 9
2.2.1 Via-First 9
2.2.2 Via-Middle 9
2.2.3 Via-Last 10
2.2.4 TSV文獻探討 10
2.3 超臨界相態 12
2.3.1 超臨界流體 12
2.3.2 超臨界二氧化碳 12
2.3.3 超臨界二氧化碳電鍍文獻回顧 14
2.3.4 後超臨界二氧化碳電鍍文獻回顧 15
第三章 實驗方法 16
3.1 實驗流程 16
3.1.1 電鍍實驗設備 17
3.1.2 電鍍液之調配 18
3.1.3 晶片製作 19
3.1.4 晶片清潔 20
3.1.5 微影製程 21
3.1.6 PVD製程 23
3.1.7 ICP-RIE蝕刻製程 25
3.1.8 濕式蝕刻製程 27
3.1.9 三種電鍍實驗前處理 28
3.1.10 表面形貌觀察 29
3.1.11 維克式硬度測量 30
3.1.12 表面粗糙度測量 31
3.1.13 鍍層薄膜內應力測量 33
3.1.14 鍍層四點探針導電性測量 34
3.1.15 鍍層薄膜抗腐蝕性 36
4.1 電流效率 37
4.2 機械性質量測 38
4.2.1 平均晶粒大小 38
4.2.2 薄膜表面形貌 39
4.2.3 薄膜表面粗糙度 41
4.2.4 薄膜表面硬度 42
4.2.5 鍍層薄膜內應力值 43
4.2.6 鍍層薄膜以及TSV電阻值 44
4.2.7 鍍層薄膜抗腐蝕性 45
第五章 結論與未來展望 47
5.1 電鍍製程之影響 47
5.2 壓力對於鍍層之影響 47
參考文獻 48
[1]Pletcher, D., Walsh, F.C., Industrial Electrochemistry, London: Chapman & Hall, 1989.
[2]Cuong, N. V., Study on the Mechanical Properties of Nickel Coating Electrodeposited in Electrolyte Mixed with Supercritical Carbon Dioxide, Ph.D. Thesis, National Taipei University of Technology, Taiwan, 2012.
[3]劉庭宇,電流模式與介面活性劑對超臨界電鍍鎳鍍層之影響探討,碩士論文,國立國立臺北科技大學製造科技研究所,臺北,2011。
[4]蘇癸陽,實用電鍍理論與實驗,復文書局,1990年
[5]楊聰仁,電鍍鎳與無電鍍鎳實驗,台中市,逢甲大學材料科學與工程學系。
[6]莊鴻緯,影響後超臨界二氧化碳電鍍鎳之因子與機械性質之研究,碩士論文,國立台北科技大學製造科技研究所,台北,2013。
[7]Schlesinger, M., and Paunovic, M., “Modern Electroplating”, Wiley-Interscience, 2000.
[8]H. Yoshida, M. Sone, A. Mizushima, K. Abe, X. Tang Tao, S. Ichihara, and S. Miyata, “Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution,” Journal of Chemistry Letters, Vol. 31, No. 11, (2002) pp.1086-1087.
[9]Kanani, N., Electroplating: Basic Principles, Process and Practice, USA : Elsevier Science, 2004.
[10]Nguyen, N. T., Boellaard, E., Pham, N. P., Kutchoukov, V. G., Craciun, G., & Sarro, P. M. (2002). Through-wafer copper electroplating for three-dimensional interconnects. Journal of Micromechanics and Microengineering, 12(4), 395.
[11]V.C. Nguyen, C.Y. Lee, F.J. Chen, C.S. Lin, T.Y. Liu, "Study on the internal stress of nickel coating electrodeposited in an electrolyte mixed with supercritical carbon dioxide", Surface and Coatings Technology 206 (2012) 3201-3207.
[12]Dixit, Pradeep, and Jianmin Miao. "Aspect-ratio-dependent copper electrodeposition technique for very high aspect-ratio through-hole plating."Journal of the Electrochemical society 153.6 (2006): G552-G559.
[13]高紘生醫,台灣第一超臨界CO2萃取技術。
[14]莊晏綺,在乳化超臨界二氧化碳流體中界面活性劑對鎳磷電鍍的影響,碩士論文,國立成功大學,台南,2011。
[15]陳郁欣、許名智,超臨界二氧化碳,臺北:臺灣大學科學教育發展中心,2013。
[16]王鴻宇,於超臨界二氧化碳流體中以無電鍍方法製備鎳硼合金之研究,碩士論文,國立成功大學材料科學及工程學系,臺南,2009。
[17]Keagy, J. A., Zhang, X., Johnston, K. P., Busch, E., Weber, F., Wolf, P. J., Rhoad, T., “Cleaning of Patterned Porous Low-k Dielectrics with Water, Carbon Dioxide and Ambidextrous Surfactants,” Journal of Supercritical Fluids, vol. 39, 2006, pp. 277-285.
[18]Darr, J. A., Poliakoff, M., “New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids,” Chemical Reveiews, vol. 99, 1999, pp. 495-541.
[19]Subramaniam, B., Rajewski, R. A., Snavely, K., “Pharmaceutical Processing with Supercritical Carbon Dioxide,” Pharmaceutical Science, vol. 86, 1997, pp. 885-890.
[20]H. Yoshida, M. Sone, A. Mizushima, K. Abe, X. Tang Tao, S. Ichihara, and S. Miyata, “Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution,” Journal of Chemistry Letters, Vol. 31, No. 11, (2002) pp.1086-1087.
[21]Hideo Yoshida, Masato Sone, Hiroaki Wakabayashi, Hao Yan, Kentaro Abe, Xu Tang Tao, Aya Mizushima, Shoji Ichihara, Seizo Miyata, “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film,” Thin Solid Films 446 (2004) 194–199.
[22]Hao Yan, Masato Sone, Aya Mizushima, Takabumi Nagai, Kentaro Abe, Shoji Ichihara, Seizo Miyata, “Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant,” Surface & Coatings Technology, 187, 2004, pp. 86–92.
[23]Nao Shinoda , Tetsuya Shimizu, Tso-Fu Mark Chang, Akinobu Shibata, Masato Sone,” Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles,” Thin Solid Films 529 (2013) 29–33.
[24]Tso-Fu Mark Chang , Tetsuya Shimizu, Chiemi Ishiyama, Masato Sone, “Effects of pressure on electroplating of copper using supercritical carbon dioxide emulsified electrolyte,” Thin Solid Films 529 (2013) 25–28.
[25]Tetsuya Shimizu, Nao Shinoda, Tso-Fu Mark Chang, Akinobu Shibata, Masato Sone, “Crystal growth on novel Cu electroplating using suspension of supercritical CO2 in electrolyte with Cu particles,” Surface & Coatings Technology, Vol. 231, pp. 77–80, 2013.
[26]V. C. Nguyen, C. Y. Lee, F. J. Chen, C. S. Lin, L. Chang, “An electroplating technique using the post supercritical carbon dioxide mixed watts electrolyte,” Surface & Coatings Technology 232 (2013) 234-239.
[27]Pletcher, D., Walsh, F.C., Industrial Electrochemistry, London: Chapman & Hall, 1989.
[28]Ho-Chiao Chuang, Wei-Hong Lai, “Fabrication of through-silicon vias by supercritical CO2 emulsion-enabled nickel electroplating,” Materials Science in Semicondutor Processing 23 (2014) 27-33.
[29]Ho-Chiao Chuang, Wei-Hong Lai, Jorge Sanchez, “An investigation of supercritical-CO2 copper electroplating parameters for application in TSV chips,” J. Micromech. Microeng. 25 (2015) 015004.
[30]T.C. Huang, J. K. Howard, “Characterization of Ni-Cr thin films by X-ray analysis,” Thin Solid Films 148 (1987) 209-218.
[31]http://waoffice.ee.kuas.edu.tw/download/%E5%BB%BA%E5%BE%B7%E7%A0%94%E7%A9%B6%E6%89%80%E8%B3%87%E6%96%99/%E7%94%B0%E5%8F%A3/%E7%94%B0%E5%8F%A3%E7%A4%BA%E7%AF%84/%E5%8D%8A%E5%B0%8E%E9%AB%94%E6%8F%90%E4%BE%9B%E6%AA%94%E6%A1%88/Chap9_%E8%9D%95%E5%88%BB.pdf
[32]http://www.3t-t.com/knowledge.php
[33]http://www.s-d-s.com.tw/company-1.htm
[34]http://www.ndl.narl.org.tw/docs/publication/22_4/pdf/E5.pdf
[35]http://www.isu.edu.tw/upload/81201/43/news/postfile_23409.pdf
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊