(18.204.227.34) 您好!臺灣時間:2021/05/19 08:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宗翰
研究生(外文):Zong-Han, Lin
論文名稱:含鎳類鑽碳薄膜於非酵素葡萄糖感測之應用研究
論文名稱(外文):A Study of Nickel Incorporated Diamond-Like Carbon Thin Film for Non-Enzymatic Glucose Detection Applications
指導教授:林啟瑞林啟瑞引用關係
口試委員:陶明科林原誌郭正次林啟瑞
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:葡萄糖電化學射頻非平衡式磁控濺鍍類鑽碳薄膜
外文關鍵詞:GlucoseElectrochemicalNickelRadio frequency magnetron sputteringDiamond-like carbon thin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要將製備含鎳類鑽碳薄膜應用於非酵素葡萄糖檢測的研究,使用射頻非平衡磁控濺鍍系統(Radio frequency unbalance magnetron sputtering system) 搭配鑽石奈米顆粒壓製而成之鑽石靶材沉積含鎳類鑽碳薄膜,探討不同製程參數對於薄膜表面形貌、內部sp2/sp3之組成比例及薄膜微細組織和晶體結構等相關薄膜特性之影響。實驗結果得知,在鑽石靶材濺射功率150 W和基板偏壓-40 V為最佳化參數,可沉積出高sp3鍵結含量(56.8%)的類鑽碳薄膜。接著藉由系統內之雙靶濺鍍沉積含鎳類鑽碳薄膜,由TEM影像圖觀察得知,鎳奈米晶粒均勻分布在無定型碳基質中,隨著鎳沉積功率的增加,薄膜內鎳含量從3 at.%提高至11.5 at.%。接著使用循環伏安法(CV)在0.1 M H2SO4溶液中進行抗腐蝕測試,可得到適當鎳含量的含鎳類鑽碳薄膜具有2.12 V的寬電化學電位勢窗,摻雜較高的鎳會造成薄膜內sp3鍵結含量降低,導致薄膜抗腐蝕性較差。此外在K4Fe(CN)6溶液中,含鎳類鑽碳薄膜電極具有良好的可逆反應,證明含鎳類鑽碳薄膜在電化學領域有極大的潛力。最後利用Ni-DLC 7W薄膜電極進行葡萄糖的檢測,在0 mM~10 mM的範圍內,葡萄糖濃度與氧化還原電流峰值呈線性關係,並且可分別辨識抗壞血酸及尿酸。實驗證明含鎳類鑽碳薄膜電極所製備出之非酵素葡萄糖感測器,其具有高靈敏度、高穩定性、再現性及選擇性,達到葡萄糖偵測之能力。
This thesis has focused on the study of fabrication process of nickel incorporated diamond-like carbon films and their characteristics including of microstructure, morphology, electrochemical characteristics, aiming at applications in non-enzymatic glucose detection. Novel diamond nanoparticles target was employed in unbalanced magnetron radio-frequency sputtering process which was controlled to prepare high quality diamond-like carbon (DLC) films. Our data show that relatively high sp3 bonding fraction (56.8%) of the DLC film was obtained under optimized sputtering power and substrate bias voltage of 150 W and -40 V, respectively. Low temperature co-sputtering process has been developed to prepare nickel incorporated DLC films with various Ni fraction using various Ni target sputtering powers. In this work, TEM analysis reveals a highly uniform distribution of Ni crystallites in amorphous carbon matrix with fraction ranged from 3 at.% to 11.5 at.% which is considered as activated sites for the glucose detection. Our cyclic voltammetry (CV) measurements using 0.1 M H2SO4 solution demonstrate that the Ni-DLC films possess large electrochemical potential window of 2.12 V, and this is also seen to be significantly reduced at higher Ni incorporation level owing to lower sp3 fraction which leading to poor anti-corrosion of the film. In addition, the as-prepared Ni-DLC film electrodes also shown outstanding redox chemical characteristics with K4Fe(CN)6 solution, thus demonstrating prospect potential applications in electrochemical engineering fields. The non-enzymatic glucose detection investigation indicates that the Ni-DLC film electrode prepared under 7 W of Ni target sputtering power possesses good detecting performance, high stability, and high sensitivity to glucose concentration up to 10 mM, even with the existence of uric acid and ascorbic acid. The peak current was observed to be proportional to glucose concentration and scan rate, indicating highly reversibility redox process of the film electrode and glucose.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 x
圖目錄 xi
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究範疇 3
第二章 基礎理論及原理 4
2.1 糖尿病 4
2.1.1糖尿病的類型 5
2.2 葡萄糖 7
2.3 尿酸 8
2.4 抗壞血酸 8
2.5 生物感測器 9
2.5.1生物感測器種類 10
2.5.2 感測器的類型 11
2.5.2.1 電化學法測定方法 11
2.6 葡萄糖酵素電極生物感測器 13
2.6.1 葡萄糖酵素固定於電極之方法 14
2.6.1.1 共價鍵結固定法(covalent binding) 15
2.6.1.2 物理吸附(physical adsorption) 16
2.6.1.3 物理包埋(physical entrapping) 16
2.6.1.4 交聯法(Cross-linking) 16
2.7 碳材料結構與種類介紹 17
2.7.1 碳的同素異構物 17
2.7.2 類鑽碳簡介 19
2.7.3 類鑽碳之種類與性質 21
2.8 鍍膜原理 23
2.8.1 電漿原理 23
2.8.2 濺鍍原理及方法 23
2.9 薄膜成膜理論 26
2.9.1 薄膜沉積 26
2.9.2 基板偏壓效應 27
第三章 實驗流程與研究方法 28
3.1 實驗流程設計 28
3.2 製作類鑽碳膜實驗設備 32
3.2.1 實驗靶材 32
3.2.2 實驗基材 32
3.2.3 自組裝雙靶式R.F.非平衡式磁控濺鍍系統簡介 33
3.3 薄膜特性分析之儀器介紹 35
3.3.1 場發射掃描式電子顯微鏡 35
3.3.2 拉曼光譜儀 37
3.3.3 X-光電子能譜儀 39
3.3.4 高解析度穿透式電子顯微鏡(HR-TEM) 41
3.3.5 電化學分析儀(Electrochemical Analyzer) 42
第四章 結果與討論 44
4.1 探討不同製程參數下對類鑽碳膜之性質影響 44
4.1.1 功率對高品質類鑽碳膜之性質影響 44
4.1.1.1 場發射掃描式電子顯微鏡 45
4.1.1.2 拉曼光譜分析 47
4.1.1.3 X射線光電子能譜儀(XPS)分析 49
4.1.2 基板偏壓對高品質類鑽碳膜之性質影響 52
4.1.2.1 場發射掃描式電子顯微鏡 53
4.1.2.2 拉曼光譜分析 54
4.1.2.3 X射線光電子能譜儀(XPS)分析 56
4.2 含鎳類鑽碳薄膜性質之影響 58
4.2.1 鎳靶材功率對類鑽碳薄膜之影響 58
4.2.1.1 場發射掃描式電子顯微鏡 59
4.2.1.2 拉曼光譜分析 61
4.2.1.3 X射線光電子能譜儀(XPS)分析 63
4.2.1.4 含鎳類鑽碳薄膜之HR-TEM分析 67
4.3 電化學循環伏安法分析(Cyclic voltammetry) 69
4.3.1含鎳類鑽碳薄膜之抗腐蝕試驗 69
4.3.2含鎳類鑽碳薄膜之電化學響應和動力學機制 70
4.3.3含鎳類鑽碳薄膜之葡萄糖檢測 72
4.3.4含鎳類鑽碳薄膜之葡萄糖檢測 75
4.3.5尿酸與抗壞血酸對於葡萄糖感測之影響 76
第五章 結論與未來展望 78
5.1 結論 78
5.2 未來展望 79
參考文獻 80
[1] International Diabetes Federation. IDF Diabetes, 7 ed. Brussels, Belgium: International Diabetes Federation, 2015.
[2] Ripoll, Brian C. Leutholtz, Ignacio, “Exercise and disease management 2nd ed,” Boca Raton: CRC Press, 2011.
[3] A. K Das, S. Shah, “History of Diabetes: From Ants to Analogs,” Supplement to Japi, vol. 59, 2011, pp.6-7.
[4] MacCracken J., “Puzzles and promises in diabetes management,” Postgrad Med, vol.4, 1997.
[5] Houssay B. A., “The discovery of pancreatic diabetes:The role of Oscar Minkowski,” Diabetes, 1952, pp.112–116.
[6] Regents of University of Michigan Medical School, 2012.
[7] H. B. Best, “Margaret and Charley: The Personal Story of Dr. Charles Best, the Co-Discoverer of Insulin,” Toronto: Dundurn Press Ltd, 2003.
[8] M. Bliss, “The Discovery of Insulin,” Chicago: University of Chicago Press, 2007.
[9] Wild M. B., Gojka R., Anders G., Richar S., “Global Prevalence of Diabetes.Diabetes Care,” vol.27, 2004, pp.1047-1053.
[10] Shaw J. E., Sicree R. A., Zimmet P. Z., “Global estimates of the prevalence of diabetes for 2010 and 2030,” Diabetes Research and Clinical Practice, vol.87, 2010, pp.4-14.
[11] Donovan Peter J, McIntyre H David, “Drugs for gestational diabetes,” Australian Prescriber, vol.33, 2010, pp.141-144.
[12] Ann Pietrangelo, George Krucik, “The Effects of Diabetes on the Body,” healthline, 2014.
[13] https://zh.wikipedia.org/wiki/葡萄糖
[14] https://en.wikipedia.org/wiki/Uric¬_acid
[15] Arrigoni O, De Tullio MC, “Ascorbic acid: much more than just an antioxidant,” Biochim Biophys Acta, 2002.
[16] https://en.wikipedia.org/wiki/Ascorbic¬_acid
[17] M. O. Noordewier, P. V. Warren, “Gene expression microarrays and the integration of biological knowledge,” Trends Biotechnol, vol.19, 2001, p.412.
[18] Takagishi T., Klotz I. M., “Macromolecule-small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages,” Biopolymers, vol.11, 1972, pp.483-491.
[19] 黃炳照、莊睦賢,電化學感測器,化學技術,1993,第7頁。
[20] K. Kivirand, M. Kagan, T. Rinken, “Calibrating Biosensors in Flow-Through Set-Ups: Studies with Glucose Optrodes,” State of the Art in Biosensor–General Aspects, vol.13, 2013.
[21] 呂俐瑩,以幾丁寡醣修飾平面式葡萄糖生物感測器之研究,碩士論文,國立雲林科技大學化工與災害防治研究所,2003。
[22] Bard A. J., Faulkner L. R., Electrochemical Methods, Wiley, New York, 2001.
[23] 吳浩青,李永舫,電化學動力學,台北,2001。
[24] Lipkowski, J., Ross P. N., Electrochemistry of Novel Materials, Wiley, New York, 1994.
[25] Skoog D. A., Holler F. J., Nieman T. A., Principles of Instrumental Analysis., Saunders College Publishing, 1997.
[26] L. C. Clark, C. Lyons, ”Electrode systems for continuous monitoring in cardio-vascular surgery,” Annals of the New York Academy of Sciences, vol.102, 1962, pp.29-45.
[27] J. Wang, “Electrochemical glucose biosensors,” Chemical Reviews, vol.108, 2008, pp.814-825.
[28] D. C. Harris, Quantitative Chemical Analysis, 8th Edition, W. H. Freeman and Company, New York, 2011.
[29] 鄭建業,張國鍾,高啟瀛,葡萄糖與尿酸酵素電極生物感測器,第七十一卷,第三期,第195-203頁。
[30] 張國鍾,功能性奈米金粒子輔助之酵素固定化技術應用於葡萄糖感測電極線上流動注射分析與廢棄竹筷的連續式固定化纖維酵素水解反應,博士論文,國立中原大學化學系,中壢市,2013。
[31] C. Cheng, K. C. Chang, C. S. Chen, D. G. Pijanowska, “Biosensor with nano-gold particle modified pencil lead carbon electrode for long-term glucose monitoring of waste tree branch hydrolysis,” Journal of the Chinese Chemical society, vol.58, 2011, pp.739-748.
[32] M. M. Barsan, C. M. A. Brett, “A new modified conducting carbon composite electrode as sensor ascorbate and biosensor for glucose,” Bioelectrochemis-try ,vol.76, 2009, pp.135-140.
[33] X. Chen, Z. Chen, R. Tian, W. Yan, C. Yao, “Glucose biosensor based on three dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film,” Analytica Chimica Acta, vol.723, 2012, pp.94-100.
[34] A. E. G. Cass, G. Davis, D. G. Francis, H. A. O. Hill, W. j. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, A. P. F. Turner, “Diabetes,” Analytical Chemistry, vol.56, 1984, p.667.
[35] M. G. Boutelle, H. Allen, O. Hill, M. J. Berner, “New technologies for amperometric biosensors,” Journal of Molecular Recognition, vol.9, 1996, pp.664-671.
[36] C. Sun, X. Chen, Q. Han, M. Zhou, C. Mao, Q. Zhu, J. Shen, “Interpolation in the standard additions method,” Analytica Chimica Acta, vol.776, 2013, p.17.

[37] J. Liu, N. Kon, A. Li, X. Luo, L .Cui, R. Wang, S. Feng, “Graphene bridged enzyme electrodes for glucose biosensing spplication,” Analyst, vol. 138, 2013, pp.2567-2575.
[38] X. Wang, Y. Zhang, C. Cheng, R. Dong, J. Hao, “Glucose in human serum determined by capillary electrophoresis with glucose micro-biosensor,” Analyst, vol.136, 2011,pp.1753-1759.
[39] M. Florescu, M. Barsan, R. Pauliukaite, C. M. A. Brett, “Development and application of oxysilane sol-gel electrochemical glucose biosensors based on cobalt hexacyanoferrate modified carbon film electrodes,” Electroanalysis, vol.19, 2007, pp.220-226.
[40] S. Kakhki, M. M. Barsan, E. Shams, C. M. A. Brett, “New robust redox and conducting polymer modified electrodes for ascorbate sensing and glucose biosensing,” Electroanalysis, vol.25, 2013, pp.77-84.
[41] Z. Zeng, X. Zhou, X. Huang, Z. Wang, Y. Yang, Q. Zhang, F. Boey, H. Zhang, “Electrochemical deposition of pt nanoparticles on carbon nanotube patterns for glucose detection,” Analyst, vol. 135, 2010, pp.1726-1730.
[42] C. Cheng, K. C. Chang, C. S. Chen, D. G. Pijanowska, “Biosensor with nano-gold particle modified pencil lead carbon electrode for long-term glucose monitoring of waste tree branch hydrolysis,” Journal of the Chinese Chemical Socience, vol.58, 2011, pp.739-748.
[43] C. Cheng, K. C. Chang, D. G. J. Pijanowska, “On-line flow injection analysis using gold particle modified carbon electrode amperometric detection for real-time determination of glucose in immobilized enzyme hydrolysate of waste bamboo chopsticks,” Journal of Electroanalytical Chemistry, vol.666, 2012, pp.32-41.
[44] A. Ahmadalinezhad, G. Wu, A. Chen, “Mediator-free electrochemical biosensor based on buckypaper with enhanced stability and sensitivity for glucose detection,” Biosensors and Bioelectronics, vol.30, 2011, pp.287-293.
[45] Sejin Park, Hankil Boo, Taek Dong Chung, “Electrochemical non-enzymatic glucose sensors,” Analytica Chimica Acta, vol.556, 2006, pp.46-57.
[46] A. M. Klibanov, “Immobilized Enzymes and Cells as Practical Catalysts,” Science, vol. 219, 1989, pp.722-727.
[47] F. Silvia, S. Paynter, A. R. David, E. S. Kim, “Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces,” TrAC Trends in Analytical Chemistry, vol.19, 2000, pp.530-540.
[48] K. Busch, R.Tampe, “Single molecule research on surfaces: from analytics to construction and back,” Reviews in Molecular Biotechnology, vol.82, 2001, pp.3-24.
[49] F. Rusmini, Z. Y. Zhong, J. Feijen, “Protein immobilization strategies for protein biochips,” Biomacromolecules, vol.8, 2007, pp.1775-1789.
[50] Y. M. Uang, T. C. Chou, “Fabrication of the galvanostatic polypyrrole/glucose oxidase biosensor in various pH aqueous solutions,” Biosensors and Bioelectronics, vol.19, 2003, pp.141-147.
[51] E. Tamiya, Y. Siura, A. Akiyama, I. Karube, “Ultramicro-H2O2 electrode for fabrication of the in vivo biosensor,” Ann. NY Acad. Sci., vol.613, 1990, pp.396-400.
[52] N. A. Surridge, E. R. Debold, J. Chang, G. W. Neudeck, Electron-transport rates in an enzyme electrode for glucose, Diagnostic Biosensors Polymers ed A, M. Usmani and N. Akmal, pp.47-70.
[53] Y. Lifshitz, “Diamond-like carbon – present status,” Diamond and Related Materials, vol.8, 1999, pp.1659-1676.
[54] 宋建民,鑽石合成,全華圖書,2000。
[55] Jeffrey W. Baldwin, Maxim Zalalutdinov, Tatyana Feygelson, James E. Butler and Brian H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2006, pp.50-54.
[56] Alexander G. Kvashnin and Pavel B. Sorokin, “Lonsdaleite Films with Nanometer Thickness,” Journal of Physical Chemistry Letters, vol.5(3), 2014, pp.541-548.
[57] Cai Jian, Yang Wei, Ke Peiling, Wang Aiying and Fang Yong, “Influence of Ar flow rate on Microstructures and Tribological Properties of Tetrahedral Amorphous Carbon Films,” Journal of Vacuum Science and Technology, vol.32(8), 2012, pp.740-745.
[58] V. Gernigon, P. Lévêque, C. Brochon, J. N. Audinot, N. Leclerc, R. Bechara, F. Richard, T. Heiser and G. Hadziioannou, “Fullerene-grafted block copolymers used as compatibilizer in P3HT/PCBM bulk heterojunctions: morphology and photovoltaic performances,” The European Physical Journal Applied Physics, vol.56, 2011.
[59] Kim Han Tan, Roslina Ahmad, Bey Fen Leo, Ming Chian Yew, Bee Chin Ang and Mohd Rafie Johan, “Physico-chemical studies of amorphous carbon nanotubes synthesized at low temperature,” Materials Research Bulletin, vol.47, Issue 8, 2012, pp.1849-1854.
[60] 廖士頡,電極材料影響高效能類鑽碳型紫外光感測器特性之研究,碩士論文,國立台北科技大學,2014。
[61] S. Aisenberg and Chabot, “Ion-Beam Deposition of Thin Films of Diamond-like carbon,” J. Appl. Phys, vol.42, 1971.
[62] E. Staryga and G. W. Bak, “Relationship Between Physical Structure and Electrical Properties of Diamond-like Carbon Thin Film,” Diamond and Related Materials, vol. 14 , 2005, pp.22-34.
[63] Gabor L. Hornyak, Joydeep Dutta, HF Tibbals and Anil Rao, “Introduction to Nanoscience,” CRC Press, 2008.
[64] R. Hauert, “A review of modified DLC coatings for biological applications,” Diamond and Related Materials, vol.12, Issues 3-7, 2003, pp.583-589.
[65] S. Srinivasan, Y. Tang, Y. S Li, Q. Yang and A. Hirose, “Ion beam deposition of DLC and nitrogen doped DLC thin films for enhanced haemocompatibility on PTFE,” Applied Surface Science, vol. 258, Issue 20, 2012, pp.8094-8099.
[66] Aiping Zeng, Victor F. Neto, Jose J. Gracio, Qi Hua Fan, “Diamond-like carbon (DLC) films as electrochemical electrodes,” Diamond & Related Materials, vol.43, 2014, pp.12-22.
[67] S. Aisenberg and R. Chabot, “Ion-beam deposition of thin films of diamond-like carbon,” Journal of Applied Physics, vol. 42, 1971, pp.2953-2958.
[68] J. Robertson, “Diamond-like amorphous carbon,” Material Science and Engineering: R: Reports, vol. 37, 2002, pp.129-281.
[69] 王世宏,利用非平衡磁控濺鍍含鋯類鑽碳薄膜性質之研究,碩士論文,國立高雄第一科技大學,2009。
[70] 湯鑫進,製備高導熱類鑽碳薄膜及其應用於行動通訊裝置之散熱模組,碩士論文,國立台北科技大學,2015。
[71] 吳權吉,以反應性磁控濺鍍法製備矽化物氣體阻障層之研究,碩士論文, ,私立中原大學,2005。
[72] 林明宏,摻銀類鑽碳奈米複合薄膜之生物植入和抗菌性質,碩士論文, 國立台北科技大學,2014。
[73] 陳世偉,直流式磁控濺鍍鈷薄膜之表面結構變化與其應用於OME製程之研究,碩士論文,國立成功大學,2003。
[74] B. Window and N. Savvides, “Charged particle fluxes from planar magnetron sputtering sources,” J. Vac. Sci. Technol. A, vol. 4, 1986, pp.196-202.
[75] http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
[76] http://www.ammrf.org.au/myscope/sem/practice/principles/layout.php
[77] J. P. Estrera, P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao, H. Y. Liu, E. A. Beam, “Phonon mode study of near‐lattice‐matched In x Ga1−x As using micro‐Raman spectroscopy,” Appl. Phys. Lett, vol. 61, 1992, pp. 1927.
[78] A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B - Condensed Matter and Materials Physics, vol.61, Issue 20, May 2000, pp.14095-14107.
[79] https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6
[80] Ferrari Andrea Carlo, “Determination of bonding in diamond-like carbon by Raman spectroscopy,” Diamond and Related Materials, vol.11, Issue:3-6, 2002, pp.1053-1061.
[81] N. W. Khun and E. Liu, “Effect of sputtering power on structure, adhesion strength and corrosion resistance of nitrogen doped diamond-like carbon thin films,” Journal of Nanoscience and Nanotechnology, vol.11, 2011, pp.5292-5298.
[82] K. Zhou, P. Ke, X. LI, Y. Zou, A. Wang, “Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique,” Applied Surface Science, vol.329, 2015, pp.281-286.
[83] H. Niakan, Q. Yang and J. A. Szpunar, “Structure and properties of diamond-like carbon thin films synthesized by biased target ion beam deposition,” Surface and Coatings Technology, vol. 223, 2013, pp.11-16.
[84] 沈宥瑞,含氮鑽石之成長及應用於生物抗腐蝕與生醫材料之研究,碩士論文,國立臺北科技大學,2011。
[85] D. E. Wolfe and J. Singh, “Titanium carbide coatings deposited by reactive ion beam-assisted, electron beam-physical vapor deposition,” Surface and Coatings Technology, vol.124, 2000, pp.142-153.
[86] X. L Peng, Z. H Barber, T. W Clyne, “Surface roughness of diamond-like carbon films prepared using various techniques,” Surface and Coatings Technology, vol.138, 2001, pp.23-32.
[87] A. Bogaerts, V. S. Mark, R. Gijbels, “Monte Carlo simulation of an analytical glow discharge: motion of electrons,ions and fast neutrals in the cathode dark space,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol.50, 1995, pp.179-196.
[88] M. A. Tamor and W. C. Vassel, “Raman Fingerpriniting of Amorphous Carbon Films,” J. Appl. Phys, vol. 76, Issue 6, 1994, pp. 3823-3830.
[89] 呂慧菁,電化學葡萄糖感測試片之研發,碩士論文,國立中興大學化學研究所,2003。
[90] S. Park, T. D. Chung, H. C. Kim, “Nonenzymatic Glucose Detection Using Mesoporous Platinum,” Anal. Chem., vol. 75, 2003, p. 3046.
[91] Neuburger G. G., and Johnson D. C., “Pulsed Amperometric Detection of Carbohydrates at Gold Electrodes with a Two- Step Potential waveform,” Analytical Chemistry, vol. 59, 1987, pp. 150-154.
[92] Guocheng Yang, Erjia Liu, Nay Win Khun, San Ping Jiang, “Direct electrochemical response of glucose at nickel-doped diamond like carbon thin film electrodes,” Journal of Electroanalytical Chemistry, vol. 627, 2009, pp. 51-57.
[93] C. Zhao, C. Shao, M. Li, K. Jiao, “Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode,” Talanta, vol.71, 2007, pp. 1769-1773.
[94] Y. S. Zou, L. L. He, Y. C. Zhang, X. Q. Shi, Z. X. Li, Y. L. Zhou, C. J. Tu, L. Gu, H. B. Zeng, “the microstructure and electrochemical properties of boron-doped nanocrystalline diamond film electrodes and their application in non-enzymatic glucose detection,” Journal of Applied Electrochemistry, vol.43, 2013, pp. 911-917.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top