(3.236.222.124) 您好!臺灣時間:2021/05/13 21:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇廷穎
研究生(外文):Ting-Ying Su
論文名稱:中小型有機朗肯循環膨脹器之實驗研究
論文名稱(外文):Experimental investigation of scroll expander for micro and small organic Rankine cycle electrothermal conversion
指導教授:洪祖全
指導教授(外文):Tzu-Chen Hung
口試委員:黃建華林志宏白寶實
口試日期:2016-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:感應發電機渦卷膨脹器R245fa有機朗肯循環廢熱回收
外文關鍵詞:induction generatorScroll expanderR245faOrganic Rankine cycleWaste Heat Recovery
相關次數:
  • 被引用被引用:1
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的主要是探討R245fa於有機朗肯循環 (Organic Rankine Cycle, ORC)發電系統之性能與影響,並針對膨脹器來進行更深入的探討。本團隊針對中小型廢熱源搭建兩套機組,小型機組KNT030針對廢熱量20-40kW且溫度80-100℃之熱源設計,其目標發電量為3kW,中型機組KNT100針對廢熱量60-120kW且溫度100-120℃之熱源設計,其目標發電量為10kW。兩套機組的目標輸出功率為3-10kW所以選擇使用渦卷式膨脹器。針對工業廢熱應用,本研究設計以下三種主參數變化之實驗,改變輸入熱量、改變熱源流量、改變冷卻水流量。改變輸入熱量實驗可以了解系統適合運轉的範圍。改變熱源流量實驗可以模擬廢熱量過大時,固定熱源溫度下改變熱源流量可以增加系統輸出之電能;但隨著熱源流量的增加會使膨脹器效率改變以及增加工作流體幫浦的耗損電能。改變冷卻水流量實驗可以了解到當冷卻水不足時,系統的熱電效率會很明顯的下降;冷卻水流量過大時則會浪費其冷凝能力。以上三種實驗都是對ORC機組於工業廢熱應用有非常重要的參考價值,我們也對系統使用的發電機進行了與市電併網及孤立電力系統的探討,與市電併網時膨脹器轉速會受限於電網頻率,而孤立電力系統則會隨著操作條件而改變轉速。本文也針對每種實驗進行膨脹器的效能探討,在每個實驗可以觀察膨脹器為理想膨脹、過膨脹或不足膨脹,可以藉由這些現象更精準的判斷機組是否適合運轉於目前的操作條件,最後也針對渦卷膨脹器改變體積比的理論分析,可以發現在相同體積比的膨脹器下,容量越大的機組到達最佳操作點需要較高的熱源量及溫度;因此本研究KNT030機組最佳運轉溫度為90-100℃,而KNT100機組運轉至熱源溫度125℃則仍未到達最佳操作點,根據理論推測KNT100機組運用於100-120℃的熱源溫度可以考慮降低膨脹器體積比。
本實驗膨脹器KNT030最佳運轉範圍約30-35kW輸入熱,此時膨脹器效率約65%,系統熱電轉換效率約4%,輸出電功率為1.9kW;KNT100在本實驗最佳操作數據為膨脹器效率約70%,系統熱電轉換效率約4.5%,輸出電功率為6.3kW。
The thesis focus on organic Rankine cycle(ORC) power generation system using R245fa as working fluid to investigate expander performance. Two systems are built for different heat source application. KNT030, which is expect to generate 3kW electrical power, is focus on heat source temperature range from 80˚C to 110˚C and from 20kW to 40kW of usable heat;KNT100, which is expect to generate 10kW electrical power, is focus on heat source temperature range from 100˚C to 120˚C and from 60kW to 120kW of usable heat. Both system use scroll expander due to heat source conditions, and three kind of experiment are plan to simulated industrial waste heat. Change system heat input can find suitable operation condition. When heat source temperature is fixed and flow rate is increased, expander can generate more electrical power, but electricity consumption increased and expander efficiency changed at the same time. When facing insufficient cooling water flow rate situation, cycle thermal efficiency drop severely. If cooling water is too much, it will waste its cooling ability. These experiments are valuable reference to industrial waste heat recovery application. Grid-connect and stand-alone generator mode is also compared. Grid-connect mode will fix the expander rotational speed as stand-alone mode expander rotational speed is decide by system condition. By ideal expansion, over expansion and under expansion of expander condition, operation condition and expander performance are evaluated whether the operation condition is suitable to expander or not. Volumetric ratio is also analyzed.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 7
1.4 研究流程 8
第二章 理論模型 9
2.1 熱力學模型 9
2.2 渦卷膨脹器模型 11
第三章 實驗方法 16
3.1 系統主元件與功能 16
3.2 膨脹器之設計與功能 24
3.3 感應發電機與電力系統 35
第四章 結果與討論 40
4.1改變輸入熱量對膨脹器性能的影響 40
4.2改變熱源流量對膨脹器的性能影響 53
4.3改變冷卻水流量對膨脹器的影響 63
4.4 KNT030與KNT100膨脹器改變體積比理論分析 74
第五章 結論 76
第六章 未來展望 78
附 錄 79
附錄A 三通球閥內漏問題 79
附錄B KNT030機組運轉測試不同膨脹器入口過熱度對於潤滑油油位與tank液位的相對關係 80
附錄C KNT030機組之PLC自動控制模式流程圖 82
附錄D 熱油槽油位不平衡問題改善 83
參考文獻 85
符號彙編 89
[1]經濟部能源局,能源報導 ENERGY MONTHLY,September 9 2014
[2]S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, “Techno-economic survey of Organic Rankine cycle systems, ”Renewable and Sustainable Energy Reviews, Vol. 22, 2013, pp. 168-186.
[3]T. C. Hung, T. Y. Shai, S. K. Wang, “A review of organic Rankine cycle (ORCs) for the recovery of low-temperature waste heat,” Energy, Vol. 22, 1997, pp. 661-667.
[4]T. C. Hung, “Waste heat recovery of organic Rankine cycle using dry fluids,” Energy Conversion & Management, Vol.42, 2001, pp.539-553.
[5] A. A. Lakew, Q. Bolland, “Working fluids for low-temperature heat source,” Applied Thermal Engineering, Vol. 30, 2010, pp. 1262–1268.
[6]Z. Q. Wang, Zhou N. J. Zhou, J. Guo, X. Y. Wang, “Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat,” Energy, Vol. 40, 2012, pp. 107–115.
[7]B. Saleh, G. Koglbauer, M. Wendland, J. Fischer, “Working fluids for low-temperature organic Rankine cycles,” Energy, Vol. 32, 2007, pp. 1210-1211.
[8]T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, “A study of organic working fluids on system efficiency of an ORC using low-grade energy sources,” Energy, Vol. 35, 2010, pp. 1403-1411.
[9] Qiu G, Liu H, Riffat S. Expanders for micro-CHP systems with organic Rankine cycle[J]. Applied Thermal Engineering, 2011, 31: 3301-3307.
[10] Peterson RB, Wang H, Herron T. Performance of a small-scale regenerative
Rankine power cycle employing a scroll expander[J]. Proceedings of the Institution
of Mechanical Engineers, Part A:Journal of Power and Energy, 2008. 222(3): 271-
282.
[11] James AM, Jon RJ, Jiming Cao, Douglas KP, Richard NC. Experimental testing of
gerotor and scroll expanders used in, and energetic and exergetic modeling of an
Organic Rankine Cycle[J]. Journal of Energy Resources Technology, 2009, 131:
2201-2208.
[12] Emre Oralli. Conversion of a Scroll Compressor to an Expander for Organic
Rankine Cycle Modeling and Analysis [D]. University of Ontario Institute of
Technology, 2010.
[13] Saitoh TS, Yamada N, Wakashima S. Study of solar Organic Rankine Cycle System
using scroll expander[J]. Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of
the Japan Society of Mechanical Engineers, Part B, 2005, 71(703): 986-992.
[14] Liu G. Zhao Y, Li L, Shu P. Simulation and experiment research on wide ranging
working process of scroll expander driven by compressed air[J]. Applied Thermal
Engineering, 2010, 30: 2073-2079.
[15] Lemort V, Quoilin S, Cuevas C, Lebrum J. Testing and modeling a scroll expander
integrated into an Organic Rankine Cycle[J]. Applied Thermal Engineering, 2009,
29(14-15): 3094-3102.
[16]E. Yun, D. Kim, S. Y. Yoon, K. C. Kim, “Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel,” Applied Energy, Vol. 145, 2015, pp. 246–254.
[17]A. Desideri, M. Van Den Brock, S. Gusev, V. Lemort, S. Quoilin, “Experimental campaign and modeling of a low-capacity waste heat recovery system based on a single screw expander,” 22nd International Compressor Engineering Conference at Purdue University, July 14-17, 2014, pp. 1451.
[18]Y. Q. Zhang, Y. T. Wu, G. D. Xia, C. F. Ma, W. N. Ji, S. W. Liu, K. Y., F. B. Yang, “Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine,” Energy, Vol. 77, 2014, pp. 499-508.
[19]S. Declaye, S. Quoilin, L. Guillaume, V. Lemort, “Experimental study on an open-drive scroll expander integrated into an ORC (organic Rankine cycle) system with R245fa as working fluid,” Energy, Vol. 55, 2013, pp. 173-183.
[20]R. B. Peterson, H. Wang, T. Herron, “Performance of a small-scale regenerative Rankine power cycle employing a scroll expander,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 222, 2008, pp. 271-282.
[21]H. J. Kim, J. M. Ahn, I. Park, P. C. Rha, “Scroll expander for power generation from a low-grade steam source,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 221, 2007, pp.705-712.
[22]T. Yanagisawa, M. Fukuta, Y. Ogi, T. Hikichi, “Performance of an oil-free scroll-type air expander,” Proc. of the ImechE Conf. Trans. On compressors and their systems, 2001, pp.167-174.
[23]J. C. Chang, C. W. Chang, T. C. Hung, J. R. Lin, K. C. Huang, “Experimental study and CFD approach for scroll type expander used in low-temperature organic Rankine cycle,” Applied Thermal Engineering, Vol. 73, 2014, pp. 1444-1452.
[24]G. Liu, Y. Zhao, L. Li, P. Shu, “Simulation and experiment research on wide ranging working process of scroll expander driven by compressed air,” Applied Thermal Engineering, Vol.30, 2010, pp. 2073-2079.
[25]S. Clemente, D. Micheli, M. Reini, R. Taccani, “Energy efficiency analysis of organic Rankine cycles with scroll expanders for cogenerative applications,” Applied Energy, Vol. 97, 2012, pp. 792-801.
[26]H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble, L. Fisher, J. Yih, G. Ward, “Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling,” Energy, Vol. 36, 2011, pp. 447-458.
[27]R. Zanelli, D. Favrat, “Experimental Investigation of a Hermetic Scroll Expander-Generator” International Compressor Engineering Conference at Purdue University, 1994, pp. 459-464.
[28]T. Saitoh, N. Yamada, S. Wakashima, “Solar Rankine cycle system using scroll expander,” Journal of Environment and Engineering, Vol.2, 2007, pp.708-719.
[1]A. Praveen Varma, K. Bala Chakri, “Study of grid connected induction generator for wind power applications,” Bachelor Thesis, National Institute of Technology, Rourkela, 2012.
[30] Carrier Corporation Syracuse “High efficiency compression forcommercial and industrial COMMERCIAL AND INDUSTRIAL APPLICATIONS,” SCROLL COMPRESSORS
[31] Micahel M. Cui, “Investigation on the Oil Supply System of a Scroll Compressor,” International Compressor Engineering Conference, 2004, pp.1-8
[32] V. Lemort , S. Quoilin, C. Cuevas, J. Lebrun, “Testing and modeling a scroll expander integrated into an Organic Rankine Cycle,” Applied Thermal Engineering, Vol.29, 2009, pp. 3094-3102.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔