(3.235.245.219) 您好!臺灣時間:2021/05/07 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張馨予
研究生(外文):Hsin-Yu Chang
論文名稱:不同幾何外型人工牙植體鑽頭於切削時對力學行為及溫度變化之影響
論文名稱(外文):Effects of Geometries on the Mechanical Behavior and Temperature Changes During Dental Implant Drilling Procedure
指導教授:陳文斌陳文斌引用關係
指導教授(外文):Weng-Pin Chen
口試委員:姜昱至章浩宏林俊彬
口試日期:2016-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:有限元素分析、牙植體鑽頭、切削扭矩值、切削反作力值、溫度變化
外文關鍵詞:Finite element analysisDental Implant DrillDrilling TorqueDrilling Reaction ForceTemperature Changes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
近年來,植牙治療已經成為缺牙患者的首要選擇。其植牙手術的成功率與牙植體的術後穩定性和骨整合相關,而植牙手術中的預成形鑽孔過程也會對骨整合效應產生極大的影響。然而,過往對牙植體鑽頭的研究中,鮮少有文獻探討切削過程中各鑽孔序列對齒槽骨的力學及熱傳導效應。有鑑於此,本研究使用一特殊具破壞準則和熱固耦合的有限元素分析,來探討牙植體鑽頭的幾何形狀對切削反作用力、切削扭矩值,以及最後一支鑽頭所產生的溫度變化。
首先,本研究挑選一組市售的牙植體鑽頭(Nobel Biocare- Ø2.0、Ø2.4/2.8、Ø3.2 /3.6、Ø3.8/4.2)作為參考模型,進行轉速800 rpm、進刀速率1 mm/sec的預成形鑽孔之模擬及實驗。接著,將分析與實驗的結果進行相關性分析,發現兩者擁有中高程度的相關,如此證實此有限元素分析之可行性。最後,研發兩款具有錐度的新型鑽頭組,其中,第一代新型鑽頭組是以市售鑽頭組的兩個直徑作為錐體外形的尺寸。而第二代新型鑽頭組則是參考牙植體(NobelActive RP 4.3 x 10 mm)的外型所設計。之後,再將兩款新型鑽頭組進行有限元素分析,比較其切削效率與溫度上升之情形。另外,本研究還進行牙植體的植入分析,比較不同鑽頭所製備的預成形孔座之差異。
結果顯示,新型鑽頭組的切削反作用力和鑽孔溫度都比市售鑽頭要來得低,表示新型鑽頭組更有利於切削,而錐度外形確實能有效降低鑽孔過程所產生的溫度。另外,評估不同鑽頭所製備的預成形孔座之植入扭矩值,發現三組之最大植入扭矩值(52.6, 39.2, 53.5 N-cm)皆大約介於文獻的建議值(30-50 N-cm),而市售鑽頭組和第二代新型鑽頭組的預成形孔座之最大扭矩值則些許超過建議範圍的上限值(50 N-cm),表示若是使用此款牙植體(NobelActive RP 4.3 x 10 mm)時,對於齒槽骨質良好(D1, D2)之病人,這二組鑽頭所製備的預成形孔座之尺寸只可大不可小,以免過高的植入扭矩值破壞齒槽骨,進而造成牙植體的鬆動或脫落。本研究之結果將可作為後續植牙鑽頭設計之參考。
In recent years, dental implant surgery has become the first choice for edentulous patients. The success rate of the implant surgery is highly related to the stability and osseointegration of the implant. Also, the pre-formed drilling process in the implant surgery can greatly affect the osseointegration efficacy. However, previous literatures rarely considered the mechanical and thermal effects on the alveolar bone during the drilling sequence. Therefore, in the current study, a special finite element analysis (FEA) incorporating failure criterion and thermo-mechanical coupling was used to determine the effects of drill geometries on the drilling reaction force, drilling torque, and the temperature change of the bone during the final drilling process.
First, a commercial dental implant drill set (Nobel Biocare - Ø2.0, Ø2.4/2.8, Ø3.2 /3.6 and Ø3.8/4.2) was selected as the base model in this study. A drilling speed of 800 rpm and feed rate of 1 mm/sec was used throughout the drilling procedures for both the finite element analyses and experimental tests. And then, correlation analysis was used to compare the analytical results with the drilling experimental results. We found high correlation between the analysis and experiment results. Therefore, the feasibility of the simulation was verified. Finally, new sets of dental implant drills with taper shape were developed. The first generation new drill sets were designed using the diameters of the commercial dental implant drill sets as the size of the cone shape. The second generation new drill sets were designed according to the geometric shape of the commercial dental implant (NobelActive RP 4.3 x 10 mm). And then, Finite element simulations of the new drill sets were performed to evaluate their drilling efficiency and the bone temperature rise, respectively during drilling procedure. Moreover, FEA of dental implant insertion to the pre-drilled bone was performed to compare the difference of site preparation by three different drill sets.
The results showed that the newly designed dental implant drills can reduce the drilling reaction force and temperature rise. It indicates new drill sets performed well in bone drilling and the tapered shape can indeed effectively reduce the temperature generated during the drilling process. Moreover, the insertion torque of site preparation by three drill sets was evaluated. It was found that the maximum torque values of site preparation by the three drill sets (52.6, 39.2, 53.5 N-cm) were all roughly lie within the suggested range (30-50 N-cm) from literature. The maximum torque values for the commercial dental implant drill sets and the second generation new drill sets were a little higher than the upper value (50 N-cm) of the recommended range. If this dental implant (NobelActive RP 4.3 x 10 mm) was used for implant surgery for patients with good alveolar bone quality (D1, D2), the size of the site preparation by these two drill sets can only be larger in order to avoid damage of the alveolar bone by excessive insertion torque that can lead to the loosening of dental implant. This study could provide an important reference for designing new dental implant drills.
摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1前言 1
1.2研究背景與文獻回顧 2
1.2.1 牙植體鑽頭之相關研究 2
1.2.2 有限元素分析之相關研究 3
1.2.3 鑽孔試驗之相關研究 6
1.2.4 文獻總結 8
1.3研究動機與目的 8
第二章 基礎理論 9
2.1牙齒結構 9
2.2植牙治療 11
2.2.1術前評估 11
2.2.2手術流程 12
2.3牙植體鑽頭之介紹 13
2.4骨整合定義 14
2.5材料失效理論 14
2.6熱傳遞之基本概念 15
第三章 材料與方法 16
3.1研究流程 16
3.2鑽孔力學試驗 18
3.2.1精密動態量測儀器 18
3.2.2資料擷取系統 18
3.2.3熱電偶 19
3.2.4牙植體鑽頭 21
3.2.5人造假骨 22
3.2.6實驗設定 24
3.3鑽孔切削之有限元素分析 26
3.3.1三維實體模型 26
3.3.2有限元素模型 27
3.3.3邊界條件 28
3.3.4材料性質 29
3.4新型鑽頭組之研發 30
3.4.1第一代新型鑽頭組 31
3.4.2第二代新型鑽頭組 33
3.5植入牙植體之有限元素分析 35
3.5.1三維實體模型 36
3.5.2有限元素模型 37
3.5.3邊界條件 38
3.5.4材料參數 39
第四章 結果 40
4.1驗證 40
4.1.1牙植體鑽頭之切削反作用力 40
4.1.2牙植體鑽頭之切削扭矩值 43
4.1.3鑽孔過程對人造假骨之溫度變化 45
4.2市售與新型鑽頭組之比較 48
4.2.1牙植體鑽頭之切削反作用力 48
4.2.2牙植體鑽頭之切削扭矩值 50
4.2.3鑽孔過程對人造假骨之溫度變化 51
4.3牙植體植入不同預成形孔座 54
第五章 討論 55
5.1鑽頭外形對切削行為之影響 55
5.2鑽頭外形對溫度之影響 56
5.3鑽頭外形對預成形孔座之影響 57
5.4研究限制 59
第六章 結論 60
參考文獻 61
[1]C. Stacchi, T. Vercellotti, L. Torelli, F. Furlan, and R. D. Lenarda, "Changes in implant stability using different site preparation techniques: Twist drills versus piezosurgery. A single‐blinded, Randomized, Controlled clinical trial," Clinical Implant Dentistry and Related Research, vol. 15, pp. 118-197, 2013.
[2]P.I. Branemark, B.O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen, and A. Ohman, "Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period," Scandinavian Journal of Plastic and Reconstructive Surgery, vol. 16, pp. 1-132, 1977.
[3]N.Bertollo, T.K. Gothelf, and W. R. Walsh, "3-Fluted orthopaedic drills exhibit superior bending stiffness to their 2-fluted rivals: Clinical implications for targeting ability and the incidence of drill-bit failure," Injury, vol. 39, pp. 734-741, 2008.
[4]S. Karmani and F. Lam, "The design and function of surgical drills and K-wires," Current Orthopaedics, vol. 18, pp. 484-490, 2004.
[5]N. Bertollo, H.R. Milne, L.P. Ellis, P.C Stephens, R.M. Gillies, and W. R. Walsh, "A comparison of the thermal properties of 2- and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model," Clinical Biomechanics, vol. 25, pp. 613-617, 2010.
[6]S. Saha, S. Pal, and J. A. Albright, "Surgical drilling: Design and performance of an improved drill," Journal of Biomechanical Engineering vol. 104, pp. 245-252, 1982.
[7]K.L. Wiggins and S. Malkin, "Drilling of bone," Journal of Biomechanics, vol. 9, pp. 553-559, 1976.
[8]Y.B. Guo and D. A. Dornfeld, "Finite element modeling of burr formation process in drilling 304 stainless steel," Journal of Manufacturing Science and Engineering, vol. 122, pp. 612-619, 2000.
[9]Y.K. Tu, H.H. Tsai, L.W. Chen, C.C. Huang, Y.C. Chen, and L. C. Lin, "Finite element simulation of drill bit and bone thermal contact during drilling," Bioinformatics and Biomedical Engineering, The 2nd International Conference on. IEEE, pp. 1268-1271, 2008.
[10]B.L. Tai, D.A. Stephenson, and A. J. Shih, "An inverse heat transfer method for determining workpiece temperature in minimum quantity lubrication deep hole drilling," Journal of Manufacturing Science and Engineering, vol. 134, pp. 1-8, 2012.
[11]M. Bono and J. Ni, "The effects of thermal distortions on the diameter and cylindricity of dry drilled holes," International Journal of Machine Tools and Manufacture, vol. 41, 2001.
[12]M. Bono and J. Ni, "A model for predicting the heat flow into the workpiece in dry drilling," Journal of Manufacturing Science and Engineering, vol. 124, pp. 773-777, 2002.
[13]F. Ke, J. Ni, and D. Stephenson, "Continuous chip formation in drilling," International Journal of Machine Tools and Manufacture, vol. 45(150), pp. 1652-1658, 2005.
[14]Y.K. Tu, L.W. Chen, J.S. Ciou, C.K. Hsiao, and Y. C. Chen, "Finite element simulations of bone temperature rise during bone drilling based on a bone analog," Journal of Medical and Biological Engineering, vol. 33(3), pp. 269-274, 2013.
[15]K.Alam, M.Khan, and V.V.Silberschmidt, "3D finite-element modelling of drilling cortical bone: Temperature analysis," Journal of Medical and Biological Engineering, vol. 34(6), pp. 618-623, 2013.
[16]A. R. Eriksson and T. Albrektsson, "Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit," Journal of Prosthetic Dentistry, vol. 50, pp. 101-107, 1983.
[17]M. T. Hillery and I. Shuaib, "Temperature effects in the drilling of human and bovine bone," Journal of Materials Processing Technology, vol. 92-93, pp. 302-308, 1999.
[18]A. Scarano, A. Piattelli, B. Assenza, F. Carinci, L.D. Donato, G.L. Romani, and A. Merla, "Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills," Clinical Implant Dentistry and Related Research, vol. 13, pp. 319-323, 2011.
[19]G. Giro, N. Tovar, C. Marin, E.A. Bonfante, R.Jimbo, M. Suzuki, M.N. Janal, and P. G. Coelho, "The effect of simplifying dental implant drilling sequence on osseointegration: An experimental study in dogs," International Journal of Biomaterials, vol. 2013, pp. 1-6, 2013.
[20]G.D. Strbac, K. Giannis, E. Unger, M. Mittlböck, C. Vasak, G. Watzek, and W. Zechner, "Drilling- and withdrawing-related thermal changes during implant site osteotomies," Clinical Implant Dentistry and Related Research, vol. 17, pp. 32-43, 2015.
[21]http://stephaniesnelsondds.com/rootCanals.html.
[22]http://www.24drs.com/special_report/orthodontia/1_2.asp.
[23]U. Lekholm and G. A. Zarb, "Patient selection and preparation, In Branemark PI, Zarb GA, and Albrektsson T (eds)," Tissue-integrated Prosthsis: Osseointergration in Clinical Dentistry, pp. 199-209, 1985.
[24]Nobel Biocare, "Products and products," 2009.
[25]Nobel Biocare, "Product catalog 2013/14-Complete assortment," 2013.
[26]陳威成,預成形孔座對於牙植體植入扭矩之影響,碩士論文,國立國立臺北科技大學機電整合研究所,2013。.
[27]Simutech, "Heat transfer and thermal stress ," 2015.
[28]W. D. Callister, "Materials science and engineering an introduction (3rd edition)," pp. 648-649, John Wiley and Sons, 1993.
[29]林宥宇,幾何外型及轉速對於人工牙植體鑽頭切削行為之影響,碩士論文,國立國立臺北科技大學機電整合研究所,2015。.
[30]http://www.sawbones.com/.
[31]童元釔,矯正用迷你骨釘系統之機械測試及有限元素分析,碩士論文,國立台灣大學醫學院臨床牙醫學研究所,2008。.
[32]http://www.matweb.com.
[33]H. Guan, R.C. van Staden, N.W. Johnson, and Y. C. Loo, "Dynamic modelling and simulation of dental implant insertion process - A finite element study," Finite Elements in Analysis and Design, vol. 47, pp. 886-897, 2011.
[34]B. S. Ramamurti, T. E. Orr, C. R. Bragdon, J. D. Lowenstein, M. Jasty, and W. H. Harris, "Factors influencing stability at the interface between a porous surface and cancellous bone: A finite element analysis of a canine in vivo micromotion experiment," Journal of Biomedical Materials Research, vol. 35, pp. 274-280, 1997.
[35]R. L. Sakaguchi and S. E. Borgersen, "Nonlinear contact anal-ysis of preload in dental implant screws," The International Journal of Oral & Maxillofacial Implants, vol. 10, pp. 295-302, 1995.
[36]N. Lioubavina-Hack, N. P. Lang, and T. Karring, "Significance of primary stability for osseointegration of dental implants," Clinical Oral Implants Research, vol. 17, pp. 244-250, 2006.
[37]L. R. Walker, G. A. Morris, and P. J. Novotny, "Implant insertional torque values predict outcomes," Journal of Oral and Maxillofacial Surgery, vol. 69, pp. 1344-1349, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔