(18.232.50.137) 您好!臺灣時間:2021/05/06 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳東煦
研究生(外文):Dong-Syu Chen
論文名稱:溶劑型積層製造技術之氧化鋯漿料回收研究
論文名稱(外文):The Study on Recycle of Solvent-based Zirconia Slurry Stereolithography of Additive Manufacturing Technology
指導教授:蘇程裕蘇程裕引用關係
口試委員:林中魁汪家昌
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:陶瓷積層製造技術、氧化釔穩定氧化鋯、溶劑型漿料、漿料回收、層厚、機械性質
外文關鍵詞:Ceramic additive manufacturing technologyYttria-stabilized zirconiaSolvent-based slurrylayer thicknessMechanical propertiesRecycling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對陶瓷積層製造3S(Solvent-based Slurry Stereolithography)製程漿料回收之研究,探討回收漿料與新漿料陶瓷工件分析其各項機械性質與物理性質。研究方法包含陶瓷積層製造技術、熱裂解回收漿料技術,同時探討列印層厚與緻密度、收縮率、抗彎強度等機械性質與物理性質之關聯性,故建立列印層厚與其機械性質關係。研究結果得知,20 μm製程抗彎強度平均強度為1057 MPa 、40 μm製程平均強度為874 MPa、回收漿料40 μm製程抗彎強度平均為389 MPa。在緻密度方面20 μm製程緻平均密度為99%、40 μm製程緻平均密度為97.9%、回收漿料40 μm製程平均緻密度為90.7%。收縮率於不同層厚列印對於X、Y軸較無影響平均差異小於0.5%,但Z軸收縮率差異為1.2~1.3%。在微克式硬度量測其三種製程平均硬度值都在1300 Hv以上,由此推論以不同層厚列印回收粉末與新粉末之陶瓷工件在微觀機械性質檢測沒有差異。
In this study, we focus on the ceramic additive manufacturing technology of Solvent-based Slurry Stereolithography (3S) to development Recover zirconia ceramic slurry combines element of high strength and accuracy characteristics. The research method that used new slurry & recovery slurry to investigate the effect of layer thickness. From the three-point bending strength analysis,20 μm layer thickness that average intensity of 1057 MPa, 40 μm layer thickness that average intensity of 874 MPa, recovery slurry’s 40 μm layer thickness that average intensity of 389 MPa. 20 μm layer thickness that average density was 99.23 %,40 μm layer thickness that average density was 97.9 %, recovery slurry’s 40 μm layer thickness that average density was 90.1 %.All layer thickness that linear shrinkage rate of the measurement results that X and Y axis shrinkage had small differences, and product shrinkage error range was less than 0.5 %,except Z axis that shrinkage error range was is 1.2~1.3%. All layer thickness that vickers hardness measurement was higher than 1300 Hv. In Vickers result that we can’t see any differend in microcosmic mechanical properties .
目 錄

摘 要 i
ABSTRACT ii
致謝 iv
目 錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 4
第二章 文獻回顧 5
2.1 積層製造簡介 5
2.1.1 陶瓷積層製造 5
2.1.2 列印層厚之表面形貌與機械性質 12
2.2複合材料回收技術 16
2.3 氧化鋯 18
2.3.1 氧化鋯陶瓷基本性質 18
2.3.2 氧化鋯之機械性質 20
2.4陶瓷漿料的穩定與分散機制 22
第三章 實驗方法與步驟 27
3.1 實驗流程 27
3.2 漿料回收 28
3.2.1 熱裂解脫酯 29
3.2.2 粒徑分析 29
3.3 製程漿料調製 30
3.3.1 氧化鋯粉末 30
3.3.2 光硬化樹脂 31
3.3.3 溶劑 31
3.3.4 分散劑 33
3.3.5 球磨理論 34
3.3.6 漿料調配與研磨處理 35
3.3.7 一次氧化鋯漿料與二次氧化鋯漿料之流變性實驗 36
3.4 3S製程原理及試片製作 38
3.4.1 3S製程原理 38
3.4.2 試片燒結 39
3.5 分析儀器及原理 40
3.5.1 場發射掃瞄式電子顯微鏡(FESEM) 40
3.5.2 X-ray繞射儀(XRD) 40
3.5.3 3D量測數位顯微鏡 40
3.5.4 緻密度-阿基米德法 41
3.5.5 孔隙率-影像分析法 43
3.5.6 萬能材料試驗機 43
3.5.7 維克氏硬度機 44
3.5.8 雷射超音波系統 45
3.5.9 熱重分析 46
3.5.10 粒徑分析 46
第四章 結果與討論 47
4.1 漿料回收 47
4.1.1 粒徑分析 47
4.1.2 回收粉末表面形貌 49
4.2 氧化鋯漿料流變性質分析 50
4.2.1 新漿料與回收漿料之流變性質 50
4.2.2 沉降實驗 51
4.3 燒結製備 53
4.3.1 燒結參數 53
4.4 氧化鋯工件性質檢測 54
4.4.1 微觀結構與特性分析 54
4.4.2 線收縮率量測 59
4.4.3 緻密度量測 61
4.4.4 三點抗彎強度實驗 63
4.4.5 表面粗糙度量測 65
4.4.6 硬度實驗 67
4.4.7 超音波非破壞實驗 69
第五章 結論 71
參考文獻 72
作者簡介 76
參考文獻

[1] 鐘國雄,牙科材料學,合記圖書出版社,2001。
[2] 汪家昌、湯華興,“一種溶劑型漿料鋪層光照硬化快速原型加工系統及其製造方法”,中華民國專利I411540,2013。
[3] American Society for Testing and Materials, Standard Terminology for Additive Manufacturing Technologies, 2009, ASTM F2792 - 12a. [Websites message]. Retrieved from http://www.astm.org/Standards/F2792.htm
[4] A. Zocca, P. Colombo, C. M. Gomes, J. Guunster, “Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities”, Journal of the The American Ceramic Society, Berlin, Germany, 98, 2015, pp. 1983–2001
[5] J.W. Halloran, V. Tomeckova, S. Gentry, “Photopolymerization of powder suspensions for shaping ceramics”, Journal of the European Ceramic Society, 31, 2011, pp. 2613–2619
[6] A. Badeva, Y. Abouliatima, T. Chartiera, “Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography”, Journal of Photochemistry and Photobiology A: Chemistry, 222, 2011, pp. 117–122
[7] C.P. Jiang, H.J. Hsu, S.Y. Lee, “Development of Mask-less Projection Slurry Stereolithography for the Fabrication of Zirconia Dental Coping”, Journal of Precision Engineering and Manufacturing, Yunlin, Taiwan, 11, 2014, pp. 2413–2419
[8] T. Chartier, C. Chaput, F. Doreau, M. Loiseau, “Stereolithography of structural complex ceramic parts”, Journal of Materials Science, Limoges, France, 37, 2002, pp. 3141–3147
[9] M. Vaezi, C. K. Chua, “Effects of layer thickness and binder saturation level parameters on 3D printing process”, International Journal of Advanced Manufacturing Technology, 53, 2010, pp. 275–284
[10] K. Chockalingam, N. Jawahar, “Influence of layer thickness on mechanical properties in stereolithography”, 12, 2006, pp. 106–113
[11] H. Gonga, M. Beauchampb, S. Perry, “Optical approach to resin formulation for 3D printed microfluidics, RSC Advances, 5, 2015, pp. 106621–106632
[12] Y. Yanga, R. Booma, B. Irion , “Recycling of composite materials”, Chemical Engineering and Processing:Process Intensification, 51, 2012, pp. 53–58
[13] K.L. Pickering, M.D.H. Berg, “Quality and durability of recycled composite materials”, Management Recycling and Reuse of Waste Composites, UK, 2010, pp. 303–327.
[14] S.J. Pickering, “Recycling technologies for thermoset composite materials – current status”, Applied Science and Manufacturing, 37, 2006, pp. 1206–1215.
[15] K. Larsen, “ Recycling wind, Reinforced Plastics”, 53, 2009, pp. 20–23
[16] J. Palmer, O.R. Ghita, L. Savage, K.E. Evans, “Successful closed-loop recycling of thermoset composites”, Applied Science and Manufacturing, 40, 2009, pp. 490–498
[17] W. Kamingsky, “Fluidised bed pyrolysis of waste polymer composites for oil and gas recovery”, Recycling and Reuse of Waste Composites, UK, 2010, pp. 192–213.
[18] M. Blazsó, “Pyrolysis for recycling waste composites”, Recycling and Reuse of Waste Composites, UK, 2010, pp. 102–121.
[19] G. M. Wolten, “Diffusionless phase transformations in zirconia and hafnia,” Journal of the American Ceramic Society, 46, 1963, pp. 418–422.
[20] A. A. Palmeiraa, M. J. Bondiolic, K. Strecker, “Densification and grain growth of nano-and micro-sized Y-TZP powders”, Ceramics International, 42, 2016, pp. 2662–2669
[21] D. J. Green, R. H. J. Hannink, M. V. Swain, “Transformation Toughening of Ceramics,” CRC Press, Inc. 1989.
[22] H. Heuer, “Transformation Toughening in ZrO2-Containing Ceramics,” Journal of the American Ceramic Society, 70, 1987, pp. 689–695.
[23] B. Stawarczyk, M. Özcan, L. Hallmann, A. Ender, A. Mehl, “The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio,” Clin Oral Invest, 17, 2013, pp. 269–274.
[24] J. Th. G. Overbeck, “Interparticle forces in colloid science,” Powder Technology, 37(1), 1984, pp. 195–208.
[25] D. Shaw, “Introduction to colloid and surface chemistry,” Butterworth Heinemann, 4th ed, 1992.
[26] D. H. Napper, “Steric stabilization,” Journal of Colloid and Interface Science, 58, 1977, pp. 390–407.
[27] D. H. Napper, “Polymeric stabilization of colloidal dispersions”, Academic Press, 1983, pp. 18–30.
[28] R. I. Feigin, D. H. Napper, “Depletion stabilization and depletion flocculation”, Journal of Colloid and Interface Science, 75, 1980, pp. 525–541.
[29] B. Vincent, “The effect of absorbed polymers on dispersion stability”, Advances in Colloid and Interface Science, 4, 1974, pp. 193–277.
[30] J. A. Lewis, “Binder Removal from Ceramics”, Annual Review of Materials Science, 27, 1997, pp. 147–173
[31] C. Quinard, T. Barriere,J.C. Gelin, “Development and property identification of 316L stainless steel feedstock for PIM and µPIM”, Powder Technology, 109, 2009, pp. 123–128
[32] C.W.Snow,D.R.Wallace,A.E.Daniell, “the carbon black oxygen reaction”, United Caebon Company, Houston Texas, 1997
[33] J. S. Reed, “Principles of Ceramics Processing,” Second Edition, Wiley-Interscience, 1995, pp. 277–305.
[34] M. P. Albano and L. B. Garrido, "Influence of the slip composition on the properties of tape-cast alumina substrates," Ceramics International, 31, 2005, pp. 57–66.
[35] 黃晨軒,“溶劑型氧化鋯漿料光成型內鋪層系統開發”,碩士論文,國立台北科技大學機電整合研究所,2013。
[36] N.N., "Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature," American Society for Testing and Materials, Barr Harbor, PA, 1996.
[37] 詹昭國,“積層製造工件材料性質之探討”,碩士論文,國立台北科技大學機電整合研究所,2014。
[38] 楊繼紅、楊陽、施南華,顆粒物後處理技術概論,北京:化學工業出版社,2004,第129頁。
[39] 呂維明、戴怡德,粉體力竟量測技術,台北市:高立圖書有限公司,1998,第 39~42頁。
[40] R. Singh, C. Gill, S. Lawson, G. P. Dransfield, “Sintering, microstructure and mechanical properties of commercial Y-TZPs,” Journal of Materials Science, 31, 1996, pp. 6055–6062.
電子全文 電子全文(網際網路公開日期:20210824)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔