(3.238.130.97) 您好!臺灣時間:2021/05/18 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃嘉良
研究生(外文):Huang Jia Liang
論文名稱:鑭元素對氧化鋁/銅擴散接合影響之研究
論文名稱(外文):The Effect of Al2O3/Cu Diffusion Bonding With Lanthanum Element
指導教授:蘇程裕蘇程裕引用關係
指導教授(外文):CYSU
口試委員:程金保楊永欽
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:氧化鋁、銅金屬、直接接合、稀土元素
外文關鍵詞:Aluminum Oxide (Al2O3)Copper(Cu)Direct bondRare earth element
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討Al2O3/Cu進行直接接合,使用活性金屬鈦-鑭金屬化陶瓷表面,進行固態擴散接合,研究結果顯示,鑭元素的添加是可以降低接合溫度至250℃,並減少接合所產生殘留應力,並針對接合介面反應層的機制、機械性質進行探討。此外,利用穿透式電子顯微鏡的鑑定下,其研究結果顯示,接合介面反應層依序為Al2O3/TiO2/Al3Ti,Ti3Al/Cu3Ti3O/Cu2O/Cu,最後使用電子顯微鏡及附著力測試儀,測試結果皆能確實將Al2O3/Cu接合且無明顯缺陷,最高抗拉強度約為15 MPa。
The purpose of this study was to investigate the bonding mechanism and mechanical properties of Al2O3/Cu direct bonding, which applied with active metal Ti-La to metalize the ceramic surface, then undergo solid-state diffusion bonding. The results showed that the bonding temperature can be reduced to 250°C with the addition of La elements and also lower the residual stress. Moreover, the results from transmission electron microscope indicated that the primary interfacial reaction layers were composed of Al2O3/TiO2/Al3Ti, Ti3Al/Cu3Ti3O/Cu2O/Cu. In the last, used Scanning Electron Microscope and PATT, results showed that Al2O3/Cu could join completely without any obvious defects. The highest tensile strength was observed around 15 MPa.
中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧 3
2.1陶瓷與金屬接合 3
2.1.1接合技術探討 3
2.1.2陶瓷預金屬化 4
2.1.3軟、硬銲接合技術 6
2.1.4活性軟銲(Active Soldering) 7
2.1.5活性硬銲(Active Brazing) 7
2.2 銲料潤濕性 8
2.3氧化鋁性質 10
2.4陶瓷/金屬接合強度探討 11
2.5反應層與強度關係 13
2.6殘留應力 14
2.7稀土元素介紹及應用 18
2.7.1稀土元素添加於銲料的應用 19
2.8擴散接合 (Diffusion Bond ing) 21
2.81固態擴散接合 21
2.9直接覆銅接合 (Direct bond of copper DBC)22
2.9.1 小結 24
第三章 研究方法與流程 25
3.1實驗流程 25
3.2試片準備 26
3.3 直流濺鍍製程 26
3.4 真空熱壓接合 28
3.5 高溫燒結爐 31
3.6 分析儀器及原理 31
3.6.1 掃瞄式電子顯微鏡 31
3.6.2 穿透式電子顯微鏡 31
3.6.3 電子微探針分析儀 32
3.6.4 X-光繞射分析儀 32
3.6.5 附著力試驗 32
3.6.6 聚焦離子束顯微鏡 33
3.6.7 維克氏硬度測試 34
第四章 結果與討論 35
4.1金屬化陶瓷微結構分析 35
4.1.1薄膜微結構分析 35
4.1.2 金屬化陶瓷形貌及擴散分析 36
4.2 Al2O3/Cu微結構觀察與分析 37
4.2.1接合微結構觀察與分析 37
4.2.2 X-射線繞射分析 39
4.2.3穿透式電子顯微鏡分析 41
4.3 維克式硬度分析 42
4.4 附著力測試結果分析 44
第五章 結論 51
參考文獻 52
[1] F. M. Hosking, A. C. Hall, M. Reece, "Visual observation of liquid filler metal flow through a brazed gap", Science and Technology of Welding and Joining, 2004, pp.95-102.
[2] J. Schilz-Harder, "Advantages and new development of direct bonded copper substrates", Microelectronics reliability, 43(3), 2003, pp.359-365.
[3] 鄒貴生,任家烈,吳愛萍,"Al及其合金作銲料或中間層連接陶瓷-金屬,材料導報", 13(2),1999, pp.16-18
[4] W. Robert, J. Messler, "Welding with Self-Propagating High-Temperature Synthesis", Welding Journal,74(10), 1995, pp.37-41.
[5] 方芳,陳錚,樓宏青,"陶瓷部分瞬間液相連接的研究進展",材料科學與工程,1999,pp.70-74.
[6] 劉深,段輝平,"SiC陶瓷的自蔓延高溫合成銲接性研究",材料工程,1997, pp.221-223.
[7] J. H. Devletian, "SiC/Al MMC Welding by a Capacitor Discharge Process", Welding Journal, 66(6), 1987, pp.33-39.
[8] 徐建新,"複合材料補片膠接修理技術的研究進展",航空學報,(4),1999, pp.381-383.
[9] 陳錚, 陶瓷/金屬活性金屬釬銲研究的現狀和進展, 華東船舶工業學院學報, 2001.
[10] H. Hao, Y. Wang, Z. Jin, "Interfacial reaction of alumina with Ag-Cu-Ti alloy", Journal of materials science, 30(5), 1995, pp.1233-1239.
[11] 吳銘方、於治水, A12O3/AgCuTi銲料連接的微觀結構及性能, 矽酸鹽學報, 2000.
[12] 莊謝宗揚,"真空硬銲氧化鋁/不鏽鋼接合機械性質與結構特性之研究",碩士論文,國立國立臺北科技大學製造科技研究所,台北市,2012,第5-7頁
[13] 劉桂武,喬冠軍,王紅潔,金志浩,盧天健,"活化鉬一錳法連接高純A12O3陶瓷/不鏽鋼",36(5),2007, pp.920-923.
[14] R. L. Coble, "Sintering crystalline solids Intermediate and final state diffusion models", ApplPhys, 1961, pp.787-792.
[15] 陳登權,陶瓷/金屬釬銲用釬料及其釬銲工藝進展,貴金屬,2001
[16] H.Vatter, Ceramic Seals, German Patent, 645871, 1935
[17] C. Zheng, H. Lou, Z. Fei, "Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayer", Journal of materials science letters, 1997, pp.2026-2028
[18] 劉聯寶,陶瓷/金屬封接技術指南,北京:國防工業出版社,1990
[19] 陸善平,吳慶,郭義等,x射線管中95A1203和Kovar合金的活性釬焊,焊接,1997
[20]于文學,安正植,峰岸知弘,钎焊陶瓷和金屬的钎料作用機理,吉林大學自然科學學報.1996,pp. 65-67.
[21] H. Hao, Y. Wang, Z. Jin, "Interfacial reaction of alumina with Ag-Cu-Ti alloy", Journal of materials science, 1995, pp.1233-1239.
[22] R. W. Smith, "Active Solder joining of metal, Ceramics and composites," Welding Journal, 80(10), 2001, pp.30-35.
[23] M.G. Nicholas, "Some observation on the wetting and bonding of nitride ceramic", Materials science, 25(6), 1990, pp.2679-2689.
[24] I.M. Low,Y. Sakka,C.F. Hu,MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments,IGI Global,2013
[25] G. Levi, W.D. Kaplan, "Oxygen induced interfacial phenomena during wetting of alumina by liquid aluminium", Acta Materialia, 50, 2002, pp.78-88.
[26] P. Shen, H. Fujii, T. Matsumoto, K. Nogi, "Wetting of (0 0 0 1) α -Al2O3 single crystals by molten Al", Acta Materialia , 48, 2003, pp. 779-784.
[27] P. Shen, H. Fujii, T. Matsumoto, K. Nogi, "Reactive wetting of molten Al on different oriented α-Al2O3 single crystals at high temperatures", Acta Materialia, 49, 2003, pp. 563-569.
[28] P. Shen, H. Fujii, T. Matsumoto, K. Nogi, "The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere", Acta Materialia, 51, 2003, pp. 4897-4906.
[29] J. Lee, H. Ishimura, T. Tanaka, "Anisotropy of wetting of molten Au on differently oriented 〖α‐Al〗_2 O_3 single crystals", Scripta Materialia, 54, 2006, pp.1369-1373.
[30] R. Voytovycha, F. Robautb, N. Eustathopoulos, "The relation between wetting and interfacial chemistry in the CuAgTi/alumina system", Acta Materialia, 54, 2006, pp. 2205-2214.
[31] A.J. Klinter, G. Mendoza-Suraez, R.A.L Drew, "Wetting of pure aluminum and selected alloys on polycrystalline alumina and sapphire ", Materials Science and Engineering A, 495, 2008, pp. 147-152.
[32] A. Sangghaleh, M. Halali, "An investigation on the wetting of polycrystalline aluminum by aluminum", Journal of Materials Processing Technology, 197, 2008 pp.156-160.
[33] R. Kolenak, P. Sebo, M. Provaznik, M. Kolenakova, K. Ulrich, "Shear strength and wettability of active Sn3.5Ag4Ti(Ce,Ga) solder on Al2O3 ceramics.", Materials & Design, 32, 2011, pp. 3997-4003.
[34] J.G. Li, J. Gao, "Influence of sintering atmospheres on the wetting behaviors of titanium dioxides by molten metals", Materials Letters, 60, 2006, pp.1323-1326.
[35] P. Shen, H. Fujii, K. Nogi,"Wettability of polycrystalline rutile TiO2 by molten Al in different atmospheres", Acta Materialia, 54, 2006, pp. 1559-1569.
[36] J.G. Li, "Effects of Sintering atmospheres and non-stoichiometry on the wetting and interfacial bonding of titania with liquid copper", Materials Letters, 60, 2008, pp.2110-2113.
[37] M. LuigiaMuolo , E. Ferrera, L. Morbelli, A. Passerone, "Wetting, spreading and joining in the alumina-zirconia-Inconel 738 system", Scripta Materialia, 50, 2004, pp.325-330.
[38] G. W. Liu, "Pressureless brazing of zirconia to stainless steel with Ag–Cu filler metal and TiH2 powder", Journal of the European Ceramic Society, 2008, pp.2701–2708.
[39] J. Cao, "Interfacial reaction behavior and mechanical characterization of ZrO2/TC4 joint brazed by Ag–Cu filler metal", Materials Science & Engineering A, 2015, pp.182–189.
[40] S.Y. Chang, T.H. Chang, C.L. Yang, "Low Temperature Bonding of Alumina/Alumina and Alumina/Copper in Air Using Sn3.5Ag4Ti(Ce,Ga) Filler", Journal of Electronic Materials, 36, 2007, pp.1193–1198.
[41] A. H. Carim, R. E. Loehman, "Microstructure at the interface between AlN and a Ag-Cu-Ti braze alloy", Journal of Materials Research, 5(7), 1990, pp.1520-1529.
[42] D. Palit, A. M. Meier, "Reaction kinetics and mechanical properties in the reactive brazing of copper to aluminum nitride", Journal of materials science, 41(21), 2006, pp.7197-7209.
[43] A. Guedes, "Active metal brazing of machinable aluminum nitride-based ceramic to stainless steel", Journal of materials engineering and performance, 21(5), 2012, pp.671-677.
[44] A. Kara-Slimane, D. Juve, E. Leblond, D. Treheux, "Joining of AlN with metals and alloys", Journal of the European ceramic society, 2000, pp.1829-1836.
[45] C. H. Hsueh, "Thermal stresses in elastic multilayer systems", Thin Solid Films, 418, 2002, pp.182–188.
[46] C. H. Hsueh, A. G. Evans, "Residual stress in Metal/Ceramic Bonded Strips", AM. Ceram. Soc. , 68(5) , 1985, pp.241-248.
[47]顧鈺熹,"特種工程材料焊接",遼寧:遼寧科學技術出版社,1998
[48] A. G. Lanin, "Effect of Residual Stresses on the Strength of Ceramic Materials (Review) ", Russian Metallurgy (Metally), 2012. pp.307–322.
[49] D. R. Askeland,"The science and engineering of materials cengage", 2007
[50] Bartlett, A. T. Evans, M. Ruble, "Residual Stress Cracking of Metal/Ceramic Bonds", Acta Metal, 1991, pp.1579-1585.
[51] 李紅英,"稀土功能材料:新材料與應用技術叢書", 曉園出版社, 2006, pp.1-18.
[52] 徐光實,"神奇之土", 初版, 湖南科學技術出版社, 1995, pp.23-25.
[53] 王龍妹,杜挺,盧先利,樂可襄," 微量稀土元素在鋼中的作用機理及應用研究", 稀土, 22, 2001, pp.37-40.
[54] Y. H. Chai, W. P. Weng, and T. H. Chuang, "Relationship Between Wettability and Interfacial Reaction for Sn10Ag4Ti on Al2O3 and SiC Substrates", Ceramics International, 24, 1998, pp.273-279.
[55] L. Gorjan, G. Blugan, M. Boretius, "Fracture behavior of soldered Al2O3 ceramic to A356 aluminum alloy and resistance of the joint to low temperature exposure", Materials and Design, 2015, pp.889–896.
[56] Z. Xia, Z. Chen,Y. Shi, "Effect of Rare Earth Element Additions on the Microstructure and Mechanical Properties of Tin-Silver-Bismuth Solder", Journal of Electronic Materials, 31(6), 2002, pp.564-567.
[57] http://research.iaun.ac.ir/pd/ebrahimi/pdfs/UploadFile_6538.pdf
[58] D. R. Askeland, P. P. Phule,The Science and Engineering of Materials,New York: Brooks/Cole-Thomson Learning,2002,pp.187-196.
[59] D. Brandon , W. D. Kaplan,Joining Processes, New York: John Wiley & Sons 2005 pp.31-46.
[60] 寺井清,最新金屬接合技術,台北:復漢出版社印行,1977,第324-355頁。
[61] 蘇貴福,新材料的接合技術,台北:全華科技圖書股份有限公司,1992,第86頁。
[62] R. J. Davies and N. Stephenson, "Diffusion Bonding and Pressure Brazing of Nimonic 90 Ni-Cr-Co Alloy," Brit. Welding J., vol.19(5), 1962, pp.139-148.
[63] E. S. Hodge, "Gas Pressure Bonding of Refractory Metals", Metals Engineering Quarterly", vol. 1(4), 1962, pp.3-20.
[64] D. V. Donford and P. G. Patridge, "Diffusion Bonding of Al-Li Alloys," An Overview Materials Science and Technology", vol.8, 1992, pp.385-386.
[65] M. A. Tylkina. B. P. Polykova and E. M. Savitski, "Palladium Tungsten Phase Diagram", Jul . Inorg. Chem., vol. 6(14). 1961.
[66] H. B. Huntington, "Mechanisms of Diffusion, Atom Movements", American Society For Metals, vol. 76, 1951, pp.69-73.
[67] J. Zhao, L. Wang, D.Q. Yu, M.L. Huang, "Improvement of wettability and tensile property in Sn–Ag–RE lead-free solder alloy", Materials Letters, 56, 2006, pp. 1039– 1042.
[68] R. Fu, P. Zhang, J. Fang, "Bonding of Al to Al2O3 via Al–Cu eutectic method", Materials and Design, 2015, pp.619-624.
[69] W.H. Tuan, S.K. Lee, "Formation of CuAlO2 at the Cu/Al2O3 Interface andits Influence on Interface Strength and Thermal Conductivity", International Journal of Applied Ceramic Technology, 10, 2013, pp.723–878.
[70] M.D. Baldwin, P.R. Chidambaram, G.R. Edwards, "Spreading and interlayer formation at the copper-copper oxide/polycrystalline alumina interface", Metallurgical and materials transactions A, 25(11), 1994, pp.2497-2506.
[71] C. Beraud, M. Courbiere, C. Esnouf, D. Juve, D. Treheux, "Study of copper-alumina bonding", Journal of materials science, 24(12), 1989, pp.4545-4554.
[72] H. He, R. Fu, D. Wang, X. Song, M. Jing, "A new method for preparation of direct bonding copper substrate on Al2O3", Materials letters, 61(19-20), 2007, pp.4131-4133.
[73] J.Y. Kim, J.S. Hardy, K.S. Weil, "Effects of CuO content on the wetting behavior and mechanical properties of a Ag-CuO braze for ceramic joining", Journal of the American ceramic society, 88(9), 2005, pp.2521-2527.
[74] K. Bobzin, T. Schlaefer, L. Zhao, N. Kopp, A. Schlegel, "Brazing of ceramic-to-metal joints in air", Front. Mech. Eng.China, 5(2), 2010, pp.125-129.
[75] J.Y. Kim, J.S. Hardy, K.S. Weil, "High-temperature tolerance of the silver-copper oxide braze in reducing and oxidizing atmospheres", Journal of Materials Research, 21(6), 2006, pp.1434-1442.
[76] C. Wu, Z Wang, Q. Li, G. Shi, Y. Ma, L. Liu, "Fabrication of laminated Ti/Al2O3 composite by vacuum hot-pressing sintering", Journal of the Ceramic Society of Japan, 10, 2013, pp. 723–878.
[77] S.Y. Chang, T.H. Chuang, L.C. Tsao, C.L. Yang, Z.S. Yang, "Active soldering of ZnS–SiO2 sputtering targets to copper backing plates using an Sn3.5Ag4Ti(Ce, Ga) filler metal", Journal of Materials Engineering and Performance, 12, 2003, pp. 383-389.
[78] 余寄仲,"氧化鋯與鈦金屬高溫擴散反應之介面微觀結構分析",碩士論文, 國立交通大學材料科學與工程學系,新竹, 2000
[79] L.C. Tsao, "Interfacial structure and fracture behavior of 6061 Al and MAO-6061Al direct active soldered with Sn–Ag–Ti active solder", Materials and Design, 56, 2014, pp. 318-324.
[80] A. Zalara, B.M.M. Baretzkyb, S. Hofmannc, M. RuÈhleb, P. Panjand, "Interfacial reactions in Al2O3/Ti, Al2O3/Ti3Al and Al2O3/TiAl bilayers", Thin Solid Films, 352, 1999, pp.151-155.
[81] 劉顯光、許明發,複合材料,台北:全威圖書,2001,
[82] K. T. Jacob, K. P. Jayadevan, "Phase relations in the system Cu-La-O and thermodynamic properties of CuLaO2 and CuLa2O4", Journal of Materials Science, 37, 2002, pp.1611–1620.
[83] M. E. Kassner, R. S. Rosen, G. A. Henshall, "Discussion of void nucleation", Metallurgical transactions A. 24(8), 1993, pp.1877-1878.
[84] 吳政陽,"低溫氧化鋁/銅接合結構特性之研究",碩士論文,國立國立臺北科技大學製
造科技研究所,台北市,2015,36-44頁
電子全文 電子全文(網際網路公開日期:20210824)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top