跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 11:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙崇華
研究生(外文):Chung-Hua Chao
論文名稱:矽基板上合成極性與非極性氧化鋅薄膜應用於紫外光感測器之研究
論文名稱(外文):Synthesis of Polar and Nonpolar ZnO Thin Films on Silicon Substrates for UV Photodetector Application
指導教授:魏大華
指導教授(外文):Da-Hua Wei
口試委員:魏大華蘇程裕張合黃榮潭林啟瑞梁元彰
口試委員(外文):Da-Hua Wei
口試日期:2016-06-21
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電學院機電科技博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
中文關鍵詞:紫外光感測器電漿輔助式化學氣相沉積極性、非極性氧化鋅
外文關鍵詞:UV photodetectorPECVDpolarnonpolar ZnO thin films
相關次數:
  • 被引用被引用:5
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅(ZnO)為一多功能性之II-VI族化合物半導體材料,在室溫下具有寬的直接能隙(3.37 eV)、大的激子束縛能(60 meV)以及好的化學穩定性與生物相容性等特點,使其吸引廣大的研究興趣並已使用在相關的產品上。由於氧化鋅為六方晶系中之纖鋅礦結構(wurtzite structure),此結構具有六方對稱,且沒有對稱中心,此種特殊結構使氧化鋅晶體擁有極性面(polar plane)與非極性面(nonpolar plane),此兩種平面具有不同的表面原子排列結構與相異的物理與化學性質,使之研究與應用變得更為多樣化。氧化鋅之極性面為(0002)面向,此面向為氧化鋅之最低表面能方向,因此大部分的氧化鋅奈米結構皆沿著此方向做成長。相較於極性面之氧化鋅,(101 ̅0)及(112 ̅0)為氧化鋅之非極性面向,此結晶方向之氧化鋅製備則較為困難,使得相關的研究相對地稀少,但其特殊之晶體結構與獨特的物理性質,卻具有相當大的應用潛力。因此本實驗將利用電漿輔助式化學氣相沉積技術(plasma enhanced chemical vapor deposition, PECVD)合成出極性與非極性之氧化鋅薄膜,藉由操控不同的合成參數,包括合成壓力、溫度、以及前驅物氣體流量比例等等,能夠精確地控制氧化鋅薄膜之成長方向。研究中將PECVD製程之合成溫度、合成壓力、前驅物二氧化碳(CO2)與二乙基鋅(DEZn)之比例對於氧化鋅薄膜之特性與影響進行一系列系統性的探討,結果顯示出合成溫度是影響氧化鋅結晶方向的關鍵參數,並且結晶品質可以藉由改變合成壓力與前驅物比例獲得改善。另外,透過光發射光譜(optical emission spectroscope)臨場監控薄膜合成時之電漿組成並結合薄膜成長理論驗證提出一可能之成長機制來解釋氧化鋅結晶方向改變之原因。
於功能性應用上,將分別對於極性與非極性氧化鋅薄膜用於紫外光感測器上做一完整性之探討,並提出相關之可能響應機制。本研究透過光微影製程(photolithography)與射頻磁控濺鍍技術(RF sputtering)將指插狀白金薄膜沉積於氧化鋅薄膜上作為接觸電極以形成一感測元件。接著經由光暗電流量測與電流-時間響應曲線來判定感測器之可靠度、響應性、穩定性與靈敏度。實驗結果指出極性與非極性氧化鋅薄膜對於紫外光顯現出不同的響應特性。非極性氧化鋅薄膜對於紫外光有較佳之感測能力,響應性為4708.88 μA/W,反應及回復時間分別為0.141及0.125秒。而極性氧化鋅薄膜則無法達到較佳的響應速度,其響應性為3367.73 μA/W也較非極性氧化鋅薄膜差。本研究進一步透過後退火處理的方式,將極性氧化鋅分別在大氣、真空與氮氣氣氛下進行退火,以進一步改善極性氧化鋅薄膜感測器之效能。結果顯示在大氣退火下能夠大幅提昇感測器之響應性,而在氮氣環境下退火則可以大大改善感測器之穩定性與可靠度。
非極性氧化鋅為近幾年才興起之研究方向,且已被證實應用於光電元件上比極性氧化鋅更具有優勢。本實驗成功地使用電漿輔助式化學氣相沉積法合成出非極性之氧化鋅薄膜,並將其應用於紫外光感測器上證實其本質就具有比極性氧化鋅薄膜更佳之紫外光響應能力與反應速度。而極性氧化鋅則可藉由後退火處理的方式進一步改善其響應性能。
ZnO is a promising semiconductor material for many kinds of functional optoelectronics applications due to its wide direct band gap of 3.37 eV and high exciton binding energy of 60 meV at room temperature. ZnO is a hexagonal wurtzite structure and exhibits a non-centrosymmetric structure, which causes that the ZnO possesses polar and nonpolar plane. The polar and nonpolar planes show the different surface atomic configurations and physic and chemistry properties anisotropic, making that the ZnO attracts extensive research interests and diversity applications. The polar plane for ZnO is (0002) plane, which is a lowest surface energy plane. The most of studies are focus on growth of polar c-orientation ZnO nanostructures and explore its material properties and relative applications. Compared with polar ZnO, the nonpolar planes of (101 ̅0) and (112 ̅0) ZnO are seldom reported due to the difficulty of preparation. However, nonpolar ZnO is considered as a candidate material for next generation high efficiency optoelectronic device due to absence of spontaneous polarization effect in the crystal. Therefore, this present study used plasma enhanced chemical vapor deposition (PECVD) system to synthesize polar and nonpolar ZnO thin films. By adjusting the synthesis temperature, synthesis pressure, and precursor gas flow rate ratio to obtain the high quality ZnO thin films are the first step in this study. The experimental results indicate that the synthesis temperature is a dominated process parameter for controlling the crystallographic orientation of ZnO, and the crystal quality can be improved by altering the synthesis pressure and precursor gas flow rate ratio. Moreover, the possible growth mechanism of ZnO with different crystallographic orientations have been proposed based on the OES analyses and SEM observations.
Both the polar and nonpolar ZnO thin films are used as a sensing layer for UV photodetectors applications. The interdigitated Pt thin films were deposited onto the polar and nonpolar ZnO thin films as a contact electrodes via conventional lithography process and RF sputtering. The performance including responsivity, reliability, and sensitivity of both detector were determined by typical current-voltage (I-V) characterization under dark and UV light illumination and time-dependent photoresponse measurement. The photoresponse results indicated that the nonpolar detector possesses better responsivity (4708.88 μA/W) and faster response (0.141 s) and recovery times (0.125 s) than the polar one (3367.73 μA/W, the response time cannot be determined). The performance of the polar ZnO-based UV photodetector can be improved by using RTA system annealed in different ambients. The photodetector annealed in air revealed the largest responsivity at operating temperature of 25 oC while the detector annealed in nitrogen showed a stable responsivity.
The nonpolar ZnO-based UV photodetector with Pt as a contact electrode natively possesses good sensitivity and acceptable responsivity and reliability, but the polar ZnO-based UV photodetector have to be improved through a post-annealing assistance to exhibit a good performance.
ABSTRACT IN CHINESE i
ABSTRACT IN ENGLISH iii
ACKNOWLEDGEMENTS v
CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
Chapter 1: INTRODUCTION 1
1.1 Background 1
1.2 Motivation 4
1.3 Aims of this study 5
Chapter 2: LITERATURE REVIEW 7
2.1 Properties of ZnO 7
2.1.1 Crystal structure of ZnO 7
2.1.2 Optical and electrical properties of ZnO 10
2.1.3 Defects in ZnO 16
2.2 Growth of ZnO Crystal 19
2.2.1 Background 19
2.2.2 Growth of polar and nonpolar ZnO 22
2.2.3 Plasma enhanced chemical vapor deposition (PECVD) 31
2.3 Thin films growth mechanism 33
2.4 Metal-semiconductor contacts 35
2.4.1 Ohmic contact 36
2.4.2 Schottky contact 37
2.5 UV photodetector 38
Chapter 3: EXPERIMENTAL DETAILS 41
3.1 Experimental flowchart 41
3.2 Homemade PECVD system 42
3.3 Experimental steps 43
3.3.1 Substrate preparation and cleaning 43
3.3.2 DEZn preparation and preservation 44
3.3.3 PECVD chamber preparation and synthesis of ZnO thin films 44
3.3.4 Preparation of interdigitated-like pattern onto as-synthesized ZnO thin film 46
3.3.5 Deposition of Pt top electrode and chemical lift-off 47
3.3.6 RTA process 48
3.4 Material characterization instruments and principles 53
3.4.1 X-ray diffraction (XRD) 53
3.4.2 X-ray photoelectron spectroscopy 55
3.4.3 Photoluminescence spectroscopy 56
3.3.4 Field emission scanning electron microscopy 57
3.3.5 Transmission electron microscopy and focus ion beam milling 57
3.3.6 Atomic force microscope 58
3.3.7 Optical emission spectroscopy 59
3.3.8 Water contact angle goniometer 60
3.3.9 UV photoresponsivity analysis 61
Chapter 4: RESULTS AND DISCUSSION 62
4.1 Investigation of process parameters on ZnO crystallinity 62
4.1.1 Introduction 62
4.1.2 Synthesis temperature effect 63
4.1.3 Synthesis pressure effect 71
4.1.4 Gas flow rate ratio effect 77
4.1.5 Summary 83
4.2 Investigations on crystallographic orientation evolution of ZnO thin films and their crystal growth mechanism 85
4.2.1 Introduction 85
4.2.2 Synthesis of different crystallographic orientation ZnO thin films 86
4.2.3 Crystal structure, morphology, and optical properties 87
4.2.4 Crystal growth mechanism 93
4.2.5 Electrical property 97
4.2.6 Surface wettability 101
4.2.7 Summary 106
4.3 Investigation on effect of synthesis pressure on crystallinity of nonpolar ZnO thin films 107
4.3.1 Introduction 107
4.3.2 Synthesis of high quality nonpolar ZnO under different pressures 108
4.3.3 Crystal structure and surface morphology 108
4.3.4 Optical properties 114
4.3.5 Summary 115
4.4 Fabrication of polar and nonpolar ZnO-based UV photodetector and comparison between their performances 116
4.4.1 Introduction 116
4.4.2 Fabrication of interdigitated electrode onto polar and nonpolar ZnO thin films 118
4.4.3 Polar ZnO-based UV photodetector 119
4.4.4 Nonpolar ZnO-based UV photodetector 123
4.4.5 Discussion of performance between the polar and nonpolar ZnO-based UV photodetector 127
4.4.6 Responsivity and reliability tests of nonpolar ZnO-based UV photodetector 132
4.4.7 Summary 135
4.5 Responsivity improvement of polar ZnO-based UV photodetector by post-annealing 137
4.5.1 Introduction 137
4.5.2 Effects of annealing ambients on polar ZnO-based UV photodetector 138
4.5.3 Investigations on the response mechanism of polar ZnO-based UV photodetector annealed in different ambients 144
4.5.4 Summary 147
Chapter 5: CONCLUSIONS 151
Chapter 6: FUTURE WORK 154
REFERENCES 155
LIST OF SYMBOLS 179
CURRICULUM VITAE 181
PUBLICATION 182
[1] A. M. Holmes, Z. Song, H. R. Moghimi, and M. S. Roberts, “Relative penetration of zinc oxide and zinc ions into human skin after application of different zinc oxide formulations,” ACS Nano Vol. 10 (2016) p. 1810.
[2] J. Lee, D. C. Sorescu, and X. Deng, “Tunable lattice constant and band gap of single- and few-layer ZnO,” J. Phys. Chem. Lett. Vol. 7 (2016) p. 1335.
[3] Y. S. Kim, W. P. Tai, and S. J. Shu, “Effects of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process,” Thin Solid Films Vol. 491 (2005) p. 153.
[4] Y. Chen, D. M. Bagnall, H. J. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. Vol. 84 (1998) 3912.
[5] Y. Tchoe, C. H. Lee, J. B. Park, H. Beak, K. Chung, J. Jo, M. Lim, and G. C. Yi, “Microtube light-emitting diode arrays with metal cores,” ACS Nano Vol. 10 (2016) p. 3114.
[6] C. J. Barnett, O. Kryvchenkova, N. A. Smith, L. Kelleher, T. G. G. Maffeis, and R. J. Cobley, “The effects of surface stripping ZnO nanorods with argon bombardment,” Nanotechnology Vol. 26 (2015) 415701.
[7] A. Marcu, I. Nicolae, and C. Viespe, “Active surface geometrical control of noise in nanowire-SAW sensors,” Sens. Actuators B: Chem. Vol. 231 (2016) p. 469.
[8] J. Cui, L. Shi, T. Xie, D. Wang, and Y. Lin, “UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures,” Sens. Actuators B: Chem. Vol. 227 (2016) p. 220.
[9] B. Yin, H. Zhang, Y. Qiu, Y. Chang, J. Lei, D. Yang, Y. Luo, Y. Zhao, and L. Hu, “Piezo-phototronic effect enhanced pressure sensor based on ZnO/NiO core/shell nanorods array,” Nano Energy Vol. 21 (2016) p. 106.
[10] A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly c-axis-oriented ZnO nanorods on ZnO/glass substrate: Growth mechanism, structural, and optical properties,” J. Phys. Chem. C Vol. 113 (2009) p. 14715.
[11] C. Noguera, “Polar oxide surface,” J. Phys.: Condens. Metter Vol. 12 (2000) R367.
[12] Y. Li, Y. Z. Zhang, H. P. He, Z. Z. Ye, J. Jiang, J. G. Lu, and J. Y. Huang, “Epitaxial growth of non-polar m-plane ZnO thon films by pulsed laser deposition,” Mater. Res. Bull. Vol. 47 (2012) p. 2235.
[13] T. Moriyama, and S. Fujita, “Growth behavior of nonpolar ZnO on m-plane and r-plane sapphire by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. Vol. 44 (2005) 7919.
[14] S. K. Shaikh, S. I. Inamdar, V. V. Ganbavle, and Y. K. Rajpure, “Chemical bath deposited ZnO thin film based UV photoconductive detector,” J. Alloy. Compd. Vol. 664 (2016) p. 242.
[15] S. Safa, R. Sarraf-Mamoory, and R. Azimirad, “Investigation of reduced graphene oxide on ultra-violet detection of ZnO thin film,” Physica E Vol. 57 (2014) p. 155.
[16] X. Han, W. Du, R. Yu, C. Pan, and Z. L. Wong, “Piezo-phototronic enhanced UV sensing based on a nanowire photodetector array,” Adv. Mater. Vol. 27 (2015) p. 7963.
[17] C. H. Chao, W. J. Weng, and D. H. Wei, “Enhanced UV photodetector response and recover times using nonpolar ZnO sensing layer,” J. Vac. Sci. & Technol. A Vol. 34 (2016) 02D106.
[18] H.B. Yu, E.A. Azhar, T. Belagodu, S. Lim, and S. Dey, “ZnO nanowire based visible-transparent ultraviolet detectors on polymer substrates,” J. Appl. Phys. Vol. 111 (2012) 102806.
[19] X.W. Fu, Z.M. Liao, J. Xu, X.S. Wu, W. Guo, and D.P Yu, “Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects,” Nanoscale Vol. 5 (2013) p. 916.
[20] C. J. Ku, P. Reyes, Z. Duan, W. C. Hong, R. Li, and Y. Lu, “MgxZn1-xO thin-film transistor-based UV photodetector with enhanced photoresponse,” J. Electron. Mater. Vol. 44 (2015) p. 3471.
[21] Y. Su, Z. Wu, X. Wu, Y. Long, H. Zhang, G. Xie, X. Du, H. Tai, and Y. Jiang, “Enhancing responsivity of ZnO nanowire based photodetectors by piezo-phototronic effect,” Sens. Actuator A-Phys. Vol. 241 (2016) p. 169.
[22] E. Cagin, J. Yang, W. Wang, J. D. Phillips, S. K. Hong, J. W. Lee, and J. Y. Lee, “Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy,” Appl. Phys. Lett. Vol. 92 (2008) 233505.
[23] J. Elanchezhiyan, K. R. Bae, W. J. Lee, B. C. Shin, and S. C. Kim, “Growth and characterization of non-polar ZnO thin films by pulsed laser deposition,” Mater. Lett. Vol. 64 (2010) p. 1190.
[24] C. M. Lai, Y. E. Huang, K. Y. Kou, C. H. Chen, L. W. Tu, and S. W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. Vol. 107 (2015) 022110.
[25] C. Y. Lee, C. Chen, L. Chang, and M. M. C. Chou, “Growth of nonpolar ZnO films on (100) β-LiGaO2 substrates by molecular beam epitaxy,” J. Cryst. Growth Vol. 407 (2014) p.11.
[26] M. R. Alenezi, A. S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliantis, S. J. Henley, and S. R. P. Silva, “Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors,” J. Phys. Chem. C Vol. 117 (2013) p. 17850.
[27] P. Soundarrajan, and K. Sethuraman, “Interface energy barrier tailoring the morphological structure evolution from ZnO nano/micro rod arrays to microcrystalline thin films by Mn doping,” RSC Adv. Vol. 5 (2015) p.44222.
[28] M. D. Barankin, E. Gonzalez, II, A. M. Ladwig, and R. F. Hicks, “Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature,” Sol. Energy Mater. Sol. Cells Vol. 91 (2007) p.924.
[29] D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res. Vol. 38 (2008) p. 71.
[30] H. Morkoç, and Ü. Özgür, “Zinc oxide: Fundamentals, materials, and device technology,” first ed. Wiley-VCH, UK.
[31] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter Vol. 16 (2004) R829.
[32] D. Moore, and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructure,” J. Mater. Chem. Vol. 16 (2006) p. 3898.
[33] S. Charnvanichborikarn, M. T. Myers, L. Shao, and S. O. Kucheyev, “Enhanced radiation tolerance of non-polar-terminated ZnO,” J. Appl. Phys. Vol. 114 (2013) 213512.
[34] R. Deng, B. Yao, Y. F. Li, B. H. Li, Z. Z. Zhang, H. F. Zhao, J. Y. Zhang, D. X. Zhao, D. Z. Shen, X. W. Fan, L. L. Yang, and Q. X. Zhao, “Surface morphology, structural and optical properties of polar and non-polar ZnO thin films: A comparative study,” J. Cryst. Growth Vol. 311 (2009) p. 4398.
[35] K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett. Vol. 103 (2013) 091107.
[36] D. C. Look, G. C. Farlow, P. Reunchan, S. S. Limpijumnong, S. B. Zhang, and K. Nordlumd, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. Vol. 95 (2005) 225502.
[37] T. Y. Chiang, C. L. Dai, and D. M. Lian, “Influence of growth temperature on the optical and structural properties of ultrathin ZnO films,” J. Alloy. Compd. Vol. 509 (2011) p. 5623.
[38] M. Yang, K. Sun, and N. A. Kotov, “Formation and assembly-disassembly processes of ZnO hexagonal pyramids driven by dipolar and excluded volume interactions,” J. Am. Chem. Soc. Vol. 132 (2010) p. 1860.
[39] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls,” Adv. Funct. Mate. Vol. 20 (2010) p. 561.
[40] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chen, D. L. Philips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B Vol. 110 (2006) p. 20865.
[41] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. Vol. 79 (1996) 7983.
[42] Y. Jiao, H. J. Zhu, M. J. Zhou, X. F. Wang, and Q. Li, “Suppression of green emission in ZnO nanorods: A discussion in surface and interior structural quality manipulation,” J. Phys. Chem. C Vol. 114 (2010) p. 208.
[43] Y. Gomg, T. Andelman, G. F. Neumark, S. O’Brian, and I. L. Kuslovsly, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett. Vol. 2 (2007) p. 297.
[44] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principle study of native point defects in ZnO,” Phys. Rev. B Vol. 61 (2000) 15019.
[45] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. Vol. 82 (1999) 2552.
[46] C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B Vol. 308-310 (2001) p. 899.
[47] S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilão, J. Piroto Duarte, N. Ayres de Campos, A. Weidinger, R. L. Lichti, and S. J. C. Irvine, “Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide,” Phys. Rev. Lett. Vol. 86 (2001) 2601.
[48] Y. M. Strzhemechny, H. L. Mosbacker, D. C. Look, D. C. Reynolds, C. W. Litton, N. Y. Garces, N. C. Giles, L. E. Halliburton, S. Niki, and L. J. Brillson, “Remote hydrogen plasma doping of single crystal ZnO,” Appl. Phys. Lett. Vol. 84 (2004) 2545.
[49] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett. Vol. 85 (2000) 1012.
[50] A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanni, C. Sedrati, Y. Bouachibe, and C. Benazzouz, “Preparation and characterization of Al-doped ZnO piezoelectric thin films grown by pulsed laser deposition,” Ceram. Int. Vol. 42 (2016) p. 6701.
[51] J. Nomoto, H. Makino, and T. Yamamoto, “Limiting factors of carrier concentration and transport of polycrystalline Ga-doped ZnO films deposited by ion plating with dc arc discharge,” Thin Solid Films Vol. 601 (2016) p. 13.
[52] Z. H. Wang, Z. W. Tian, D. M. Han, and F. B. Gu, “Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO,” ACS Appl. Mater. Interfaces Vol. 8 (2016) p. 5466.
[53] D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. T. Pantelides, “Acceptor doping in ZnSe versus ZnTe,” Appl. Phys. Lett. Vol. 63 (1993) 1375.
[54] A. Onodera, N. Tamaki, K, Jin, and H. Yamashita, “Ferroelectric properties in piezoelectric semiconductor Zn1-xMxO (M = Li, Mg),” Jpn. J. Appl. Phys., Part 1 Vol. 36 (1997) p. 6008.
[55] A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A Vol. 9 (1991) p.286.
[56] T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura, and T. Ito, “Ferroelectricity in Li-doped ZnO:X thin films and their application on optical switching devices,” Jpn. J. Appl. Phys., Part 1 Vol. 40 (2001) p. 5615.
[57] W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B Vol. 73 (2006) 024117.
[58] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. Vol. 92 (2004) 155504.
[59] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B Vol. 61 (2000) 15019.
[60] X. Yan, D. Xu, and D. Xue, “〖"SO" 〗_"4" ^"2-" ions direct the one-dimensional growth of 5Mg(OH)2‧MgSO4‧2H2O,” Acta Mater. Vol. 55 (2007) p. 5747.
[61] D. Xu, and D. Xue, “Chemical bond analysis of the crystal growth of KDP and ADP,” J. Cryst. Growth Vol. 286 (2006) p. 108.
[62] J. Wu, and D. Xue, “Progress of science and technology of ZnO as advanced material,” Sci. Adv. Mater. Vol. 3 (2011) p.127.
[63] O. Qgbuu, Q. Du, H. Lin, L. Li, Y. Zou, E. Koontz, C. Smith, S. Danto, K. Richardson, and J. Hu, “Impact of Stoichiometry on structural and optical properties of sputter deposited multicomponent tellurite glass films,” J. Am. Ceram. Soc. Vol. 98 (2015) p. 1731.
[64] M. Suja, S. B. Bashar, M. M. Morshed, and J. Liu, “Realization of Cu-doped p-type ZnO thin films by molecular beam epitaxy,” ACS Appl. Mater. Interfaces Vol. 7 (2015) p. 8894.
[65] C. Triolo, E. Fazio, F. Neri, A. M. Mezzasalma, S. Trusso, and S. Patanè, “Correlation between structural and electrical properties of PLD prepared ZnO thin films used as a photodetector material,” Appl. Surf. Sci. Vol. 359 (2015) p. 266.
[66] M. L. Addonizio, “Preparation method of double-textured ZnO:B films deposited by MOCVD on plasma etched polymer buffer,” J. Alloy. Compd. Vol. 622 (2015) p. 851.
[67] R. Masuda, C. W. Hsu, M. Eriksson, Y. Kumagai, A. Koukitu, and P. O. Holtz, “Improvements in optical properties of (0001) ZnO layers growth on (0001) sapphire substrates by halide vapor phase epitaxy using thick buffer layers,” Jpn. J. Appl. Phys., Part 1 Vol. 51 (2012) 031103.
[68] J. Narayan, K. Dovidenko, A. K. Sharma, and S. Oktyabrsky, “Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures,” J. Appl. Phys. Vol. 84 (1998) 2597.
[69] P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, “Growth of high-quality epitaxial ZnO films on α-Al2O3,” J. Cryst. Growth Vol. 201-202 (1999) p. 627.
[70] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. Vol. 84 (1998) 3912.
[71] P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, S. Niki, N. Nakahara, T. Tanabe, and H. Takasu, “Uniaxial locked epitaxy of ZnO on the a face of sapphire,” Appl. Phys. Lett. Vol. 77 (2000) 1801.
[72] Y. Ma, G. Du, X. Wang, W. Li, J. Yin, D. Qiu, B. Song, X. Zhang, Y. Zhang, and D. Liu, “Growth and characteristics of ZnO thin film on CaF2 (11-21) substrate by meralorganic vapor phase epitaxy,” Appl. Surf. Sci. Vol. 243 (2005) p. 24.
[73] M. B. Bouziuraa, A. En Naciri, A. Moadhen, H. Rinnert, M. Guendouz, Y. Battie, A. Chaillou, M. A. Zaibi, and M. Oueslati, “Effects of silicon porosity on physical properties of ZnO films,” Mater. Chem. Phys. Vol. 175 (2016) p. 233.
[74] S. M. Lee, K. B. Kim, H. J. Ko, and D. C. Oh, “Dependence of substrate temperature and working gas ratio on ZnO films grown on (001) GaAs substrates by RF-sputtering,” J. Nanoelectron. Optoelectron. Vol. 11 (2016) p. 250.
[75] R. Simura, K. Sugiyama, A. Nakatsuka, and T. Fukuda, “High-temperature thermal expansion of ScAlMgO4 for substrate application of GaN and ZnO epitaxial growth,” Jpn. J. Appl. Phys. Vol. 54 (2015) 075503.
[76] X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorods inorganic/organic heterostructures light-emitting diode emitting at 342 nm,” Nano let. Vol. 8 (2008) p. 1219.
[77] T. Zhou, M. Lu, Z. Zhang, H. Gong, W. S. Chin, and B. Liu, “Synthesis and characterization of multifunctional FePt/ZnO core-shell nanoparticles,” Adv. Mater. Vol. 22 (2010) p. 403.
[78] Z. L. Wang, “Nanostructures of zinc oxide,” Mater. Today Vol. 7 (2004) p.26.
[79] N. Srinatha, Y. S. No, V. B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A, M. Umarji, and W. K. Choi, “Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin films,” RSC Adv. Vol. 6 (2016) p. 9779.
[80] B. H. Lin, W. R. Liu, C. Y. Lin, S. T. Hsu, S. Yang, C. C. Kuo, C. H. Hsu, W. F. Hsieh, F. S. S. Chien, and C. S. Chan, “Single domain m-plane ZnO grown on m-plane sapphire by radio frequency magnetron sputtering,” ACS Appl. Mater. Interfaces. Vol. 4 (2012) p. 5333.
[81] H. Akazawa, “Highly conductive, undoped ZnO thin films deposited by electron-cyclotron-resonance plasma sputtering on silica glass substrate,” Thin Solid Films Vol. 518 (2009) p. 22.
[82] J. R. Arthur, “Molecular beam epitaxy,” Surf. Sci. Vol. 500 (2002) p. 189.
[83] M. Henini, “Molecular beam epitaxy from research to mass-production- Part 1,” III-Vs Review, Vol. 9 (1996) p. 32.
[84] L. W. Martin, Y. H. Chu, and R. Ramech, “Advanced in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films,” Mater. Sci. Eng. R-Rep. Vol. 68 (2010) p. 89.
[85] J. H. Kim, J. H. Roh, K. J. Lee, S. J. Moon, J. W. Kim, K. M. Do, B. M. Moon, and S. M. Koo, “Growth and electrical properties of nonpolar and polar Ga-doped ZnO thin films on LaAlO3 and SrTiO¬3,” J. Crys. Grow Vol. 334 (2011) p. 72.
[86] J. Sun, D. A. Mourey, D. Zhao, and T. N. Jackson, “ZnO thin film, device, and circuit fabrication using low-temperature PECVD processes,” J. Electron. Mater. Vol. 37 (2008) p. 755.
[87] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011 ̅2) sapphire by metalorganic chemical vapor deposition,” J. Appl. Phys. Vol. 85 (1999) 2595.
[88] T. Lazerand, and D. Lishan, “Silicon nitride for MEMS applications: LPCVD and PECVD process comparison,” Plasma-Therm, www.plasmatherm.com.
[89] C. V. Thompson and R. Carel, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. Vol. 30 (2000) p. 159.
[90] K. S. Sree Harsha, “Principle of physical vapor deposition of thin films,” Elsevier Ltd., Oxford, 1st edition (2006).
[91] C. V. Thompson, “Texture development in polycrystalline thin films,” Mater. Sci. Eng, B Vol. 32 (1995) p. 211.
[92] A. A. Iliadis, R. D. Vispute, T. Vemkatesan, and K. A. Jones, “Ohmic metallization technology for wide band-gap semiconductor,” Thin Solid Films Vol. 420-421 (2002) p. 478.
[93] M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN” Appl. Phys. Lett. Vol. 64 (1994) 1003.
[94] S. H. Kim, K. K. Kim, S. J. Park, and T. Y. Seong, “Thermally stable and low resistance Re/Ti/Au Ohmic contacts to n ZnO,” J. Electronchem. Soc. Vol. 152 (2005) p. G169.
[95] N. R. D’Amico, G. Cantele, C. A. Perroni, and D. Ninno, “Electronic properties and Schottky barriers at ZnO-metal interfaces from first principles,” J. Phys. –Condes. Matter Vol. 27 (2015) 015006.
[96] X. Hu, J. Sun, C. Qian, F. Liu, J. Yang, G. H. Guo, and Y. Gao, “Low contact resistance on solid electrolyte-gated ZnO field-effect transistors with ferromagnetic contacts,” J. Mater. Chem. C Vol. 4 (2016) p.150.
[97] G. H. Nam, S. H. Beak, and I. K. Park, “Growth of ZnO nanorods on graphite substrate and its application for Schottky diode,” J. Alloy. Compd. Vol. 613 (2014) p. 37.
[98] R. J. Collins, and D. G. Thomas, “Photoconduction and surface effects with zinc oxide crystals,” Phys. Rev. Vol. 112 (1958) p. 388.
[99] S. Hullavarad, N. Hullavarad, D. Look, and B. Claflin, “Persistent photoconductivity studies on nanostructured ZnO UV sensors,” Nanoscale Res. Lett. Vol. 4 (2009) p. 1421.
[100] R. Calarci, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stiuca, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. Vol. 5 (2005) p. 981.
[101] A. B. Djurišić, and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small, Vol. 2 (2006) p. 944.
[102] R. Y. Gunji, M. Nakano, A. Tsukazaki, A. Ohtomo, T. Fukumura, and M. Kawasaki, “Polymer Schottky contact on O-polar ZnO with silane coupling agent as surface protective layer,” Appl. Phys. Lett. Vol. 93 (2008) 012104.
[103] L. J. Brillson, and Y. Lu, “ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys. Vol. 109 (2011) 121301.
[104] Y. K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, and R. Adelung, “Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing,” ACS Appl. Mater. Interfaces. Vol. 7 (2015) p. 14303.
[105] J. Liu, R. Lu, G. Xu, J. Wu, P. Thapa, and D. Moore, “Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro-nanowire arrays on graphene: Towards high-performance nanohybrid ultraviolet photodetectors,” Adv. Funct. Mater. Vol. 23 (2013) p. 4941.
[106] W. Wang, J. Qi, Q. Wang, Y. Huang, Q. Liao, Y. Zhang, “Single ZnO nanotetrapod-based sensors for monitoring localized UV irradiation,” Nanoscale Vol. 5 (2013) p. 5981.
[107] S. Rackauskas, K. Mustonen, T. Jarvinen, M. Mattila, O. Klimova, H. Jiang, O. Tolochko, H. Lipsanen, E. I. Kauppinen, and A. G. Nasibulin, “Synthesis of ZnO tetrapods for flexible and transparent UV sensors,” Nanotechnology Vol. 23 (2012) 095502.
[108] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor vy utilizing Schottky contact and surface functionalization” Appl. Phys. Lett. Vol. 94 (2009) 191103.
[109] M. Chen, L. Hu, J. Xu, M. Liao, L. Wu, and X. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small Vol. 7 (2011) p. 2449.
[110] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. Vol. 15 (2015) p. 3988.
[111] I. C. Noyan, and J. B. Cohen, “Residual stress measurement by diffraction and interpretation,” Spinger-Verlag, New York Inc., (1987).
[112] http://ssp.physics.upatras.gr/X-Ray%20Diffraction.html.
[113] https://fas.dsi.a-star.edu.sg/equipments/xps_10.aspx
[114] http://www.renishaw.com/en/photoluminescence-explained--25809.
[115] http://www.farmfak.uu.se/farm/farmfyskem/instrumentation/afm.html.
[116] T. K. Subramanyam, S. Srinivasulu Naidu, and S. Uthanna, “Effect of substrate temperature on the physical properties of DC reactive magnetron sputtered ZnO films,” Opt. Mater. Vol. 13 (1999) p. 239.
[117] H. Iwanaga, A. Kunishige, and S. Takeuchi, “Anisotropic thermal expansion in wurtzite-type crystals,” J. Mater. Sci. Vol. 35 (2000) p. 2451.
[118] M. Okaji, “Absolute thermal expansion measurements of single-crystal silicon in the range 300-1300 K with and interferometric dilatometer,” Int. J. Thermophys. Vol. 9 (1988) p. 1101.
[119] R.W.B. Pearse and A.J. Lichtenberg, “The Identification of Molecular Spectra,” Chapman and Hall, London 4th ed (1976).
[120] S. Inguva, C. Gray, E. McGlynn, and J.-P. Mosnier, “Origin of the 3.331 eV emission in ZnO nanorods: Comparison of vapour phase transport and pulsed laser deposition grown nanorods,” J. Lumines. Vol. 175 (2016) p. 117.
[121] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrate,” Appl. Phys. Lett. Vol. 79 (2001) p. 943.
[122] T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki, and M. Kawasaki, “Radiative and nonrediative excitonic transitions in nonpolar (112 ̅0) and polar (0001 ̅) and (0001) ZnO epilayers,” Appl. Phys. Lett. Vol. 84 (2004) p. 1079.
[123] C.L. Yang, J.N. Wang, W.K. Ge, L. Guo, S.H. Yang, and D.Z. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. Vol. 90 (2001) 4489.
[124] M. Birkholz, B. Selle, F. Fenske, and W. Fuhs, “Structure-function relationship between preferred orientation of crystallites and electrical resistivity in thin polycrystalline ZnO:Al films,” Phys. Rev. B Vol. 68 (2003) 205414.
[125] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. Vol. 4, (2004) p. 1247.
[126] M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama, and R. Ghosh, “Ultrafast and reversible gas-sensing of ZnO nanowire arrays grown by hydrothermal technique,” J. Phys. Chem. C Vol. 120, (2016) p. 3019.
[127] J. J. Cheng, S. M. Nicaise, K. K. Berggren, and S. Gradečak, “Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays,” Nano Lett. Vol. 16 (2016) p. 753.
[128] T. Wang, H. Wu, H. Zheng, J. B. Wang, Z. Wang, C. Chen, Y. Xu, and C. Liu, “Nonpolar light emitting diodes of m-plane ZnO on c-Plane GaN with the Al2O3 interlayer,” Appl. Phys. Lett. Vol. 105 (2013) 141912.
[129] P. Biswas, S. Kundu, P. Banerji, and S. Bhunia, “Super rapid response of humidity sensor based on MOCVD grown ZnO nanotips array,” Sens. Actuator B-Chem. Vol. 178 (2013) p. 331.
[130] H. Xiong, J. N. Dai, X. Hui, Y. Y. Fang, W. Tian, D. X. Fu, C. Q. Chen, M. Li, and Y. He, “Effects of the AlN buffer layer thickness on the properties of ZnO films grown on c-sapphire substrate by pulsed laser deposition,” J. Alloy. Compd. Vol. 554 (2013) p. 104.
[131] L. Q. Zhang, B. Lu, Y. H. Lu, Z. Z. Ye, J. G. Liu, X. H. Pan, and J. Y. Huang, “Non-polar p-type Zn0.94Mn0.05Na0.01O texture: Growth mechanism and codoping effect,” J. Appl. Phys. Vol. 113 (2013) 083513.
[132] L. Fanni, B. A. Aebersold, D. T. L. Alexander, L. Ding, M. Morales, S. Nicolay, and C. Ballif, “C-texture versus a-texture low pressure metalogranic chemical vapor deposition ZnO films: Lower resistivity despite smaller grain size,” Thin Solid Film Vol. 565 (2014) p. 1.
[133] N. Qin, Q. Xiang, H. Zhao, J. Zhang, and J. Xu, “Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties,” Crystengcomm Vol. 16 (2014) p. 7062.
[134] P. Sundara Venkatesh, and K. Jeganathan, “Investigations on the morphological evolution of zinc oxide nanostructures and their optical properties,” Crystengcomm Vol. 16 (2014) p. 7426.
[135] M. Wang, L. Jiang, Y. Wang, E. J. Kim, and S. H. Hahn, “Growth mechanism of preferred crystallite orientation in transparent conducting ZnO:In thin films,” J. Am. Ceram. Soc. Vol. 98 (2015) p. 3022.
[136] T. Morita, S. Ueno, T. Tokunaga, E. Hosono, Y. Oaki, H. Imai, H. Matsuda, H. Zhou, M. Hagiwara, and S. Fujihara, “Fabrication of transparent ZnO thick film with unusual orientation by the chemical bath deposition,” Cryst. Growth Des. Vol. 15 (2015) p. 3150.
[137] M. A. Rueter, and J. M. Vohs, “The surface reactions of ethyl groups on Si(100) formed via dissociation of adsorbed diethylzinc,” Surf. Sci. Vol. 262 (1992) p. 42.
[138] A. van der Drift, “Evolutionary selection, a principle growth orientation in vapour-deposited layer,” Phillips Res. Rep. Vol. 22 (1967) p. 267.
[139] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films: Control of self-texture,” J. Cryst. Growth Vol. 130 (1993) p. 269.
[140] A. Umar, and Y. B. Hahn, “Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation,” Appl. Phys. Lett. Vol. 88 (2006) 173120.
[141] P. X. Gao, and Z. L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process,” J. Phys. Chem. B Vol. 108 (2004) p. 7534.
[142] S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan, and Y. Hayalawa, “Controlled synthesis of organic ligand passivated ZnO nanostructures and their photocatalytic activity under visible light irradiation,” Dalton Trans. Vol. 44 (2015) p. 10490.
[143] M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. Vol. 16 (2014) p. 25093.
[144] F. Li, Y. Ding, P. Gao, X. Xin, and Z. L. Wang, “Single-crystal hexagonal disks and rings of ZnO: Low-temperature, large-scale synthesis and growth mechanism,” Angew. Chem. Vol. 116 (2004) p. 5350.
[145] W. Niu, H. Xu, Y. Guo, Y. Li, Z. Ye, and L. Zhu, “The effect of sulfur on the electrical properties of S and N co-doped ZnO thin films: Experiment and first-principles calculations,” Phys. Chem. Chem. Phys. Vol. 17 (2015) p. 16705.
[146] S. Dhara, and P. K. Giri, “Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film,” Thin Solid Film Vol. 520 (2012) p. 5000.
[147] S. K. Panda, and C. Jacob, “Preparation of transparent ZnO thin film and their application in UV sensor devices,” Solid-State Electron. Vol. 73 (2012) p. 44.
[148] B. J. Jin, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Film Vol. 366 (2000) p. 107.
[149] C. Park, J. Lee, H. M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C Vol. 3 (2015) p. 2737.
[150] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bai, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. Vol. 7 (2007) p. 1003.
[151] I. Soumahoro, S. Colis, G. Schmerber, C. Leuvrey, S. Barre, C. Ulhap-Bouillet, D. Muller, M. Abd-lefdil, N. Hassanain, J. Petersen, et al. “Structural, optical, spectroscopic and electrical properties of Mo-doped ZnO thin films grown by radio frequency magnetron sputtering,” Thin Solid Films Vol. 566 (2014) p. 61.
[152] K. Tang, S. Gu, J. Liu, J. Ye, S. Zhu, and Y. Zheng, “Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO thin films,” J. Alloy. Compd. Vol. 653 (2015) p. 643.
[153] S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, “Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films,” J. Phys. D: Appl. Phys. Vol. 41 (2008) 105109.
[154] M. Brandt, H. von Wenckstern, H. Schmidt, A. Rahm, G. Biehne, G. Benndorf, H. Hochmuth, M. Lorenz, C. Meinecke, T. Butz, et al. “High electron mobility of phosphorous-doped homoepitaxial ZnO thin films grown by pulsed-laser deposition,” J. Appl. Phys. Vol. 104 (2008) 013708.
[155] P. Ding, X. Pan, J. Huang, B. Lu, H. Zhang, W. Chen, and Z. Ye, “Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy,” Mater. Lett. Vol. 71 (2012) p. 18.
[156] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Vol. 28 (1936) p. 988.
[157] A. B. D. Cassie, and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. Vol. 40 (1944) p. 546.
[158] M. Żenkiewicz, “Methods for the calculation of surface free energy of solids,” J. Achiev. Mater. Manuf. Eng. Vol. 24 (2007) p. 137.
[159] P. W. Chi, D. H. Wei, S. H. Wu, Y. Y. Chen, Y. D. Yao, “Photoluminescence and wettability control of NiFe/ZnO heterostructures bilayer films,” RSC Adv. Vol. 5 (2015) p. 96705.
[160] R. Molaei, M. R. Bayati, H. M. Alipour, N. A. Estrich, and J. Narayan, “Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates,” J. Phys.:Condens. Matter Vol. 26 (2014) 015004.
[161] J. Hu, Y. Sun, W. Zhang, F. Gao, P. Li, D. Jiang, and Y. Chen, “Fabrication of hierarchical structures with ZnO nanowires on micropillars by UV soft imprinting and hydrothermal growth for a controlled morphology and wettability,” Appl. Surf. Sci. Vol. 317 (2014) p. 545.
[162] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorods films,” J. Am. Chem. Soc. Vol. 126 (2004) p. 62.
[163] X. Wu, L. Zheng, and D. Wu, “Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route,” Langmuir Vol. 21 (2005) p. 2665.
[164] G. Kwak, M. Seol, Y. Tak, and K. Yong, “Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation,” J. Phys. Chem. C Vol. 113 (2009) p. 12085.
[165] P. X. Gao, and Z. L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process,” J. Phys. Chem. B. Vol. 108 (2004) p.7534.
[166] H. Matsui, and H. Tabata, “Self-organized nanostripe arrays of ZnO (10-10) surfaces formed during laser molecular-beam-epitaxy growth,” Appl. Phys. Lett. Vol. 87 (2005) 143109.
[167] M. M. C. Chou, D. R. Hang, C. Chen, and Y. H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large LiGaO2 (100) substrates,” Thin Solid Films Vol. 519 (2011) p. 3627.
[168] Y. T. Ho, W. L. Wang, C. Y. Peng, W. C. Chen, M. H. Liang, J. S. Tian, and L. Chang, “Substrate engineering of LaAlO3 for non-polar ZnO growth,” Thin Solid Films Vol. 518 (2010) p. 2988.
[169] C. de Mello Donegá, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh, and A. Meijerink, “Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals,” J. Phys. Chem. B Vol. 7 (2003) p. 489.
[170] Z. Yang, M. Wang, X. Song, G. Yan, Y. Ding, and J. Bai, “High-performance ZnO/Ag nanowire/ZnO composite film UV photodetectors with large area and low operating voltage,” J. Mater. Chem. C Vol. 2 (2014) p. 4312.
[171] J. I. Sohn, W. K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, J. H. Warner, S. Cha, and J. M. Kim, “Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity,” Sci Rep Vol. 4 (2014) p. 5680.
[172] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science Vol. 297 (2001) p. 1947.
[173] C. H. Chao, and D. H. Wei, “Growth of non-polar ZnO thin films with different working pressures by plasma enhanced chemical vapor deposition,” Jpn. J. Appl. Phys. Vol. 53 (2014) 11RA05.
[174] J. Chen, H. Deng, H. Ji, and Y. Tian, “Effect of substrate microstructure on the misorientation of a-plane ZnO film investigated using x-ray diffraction,” J. Vac. Sci. Technol. A Vol. 29 (2011) 03A116.
[175] G. M. Ali, and P. Chakrabarti, “Fabrication and characterization of thin film ZnO Schottky contacts based UV photodetectors: A comparative study,” J. Vac. Sci. Technol. B Vol. 30 (2012) 031206.
[176] R. Zhu, Q. Zhao, J. Xu, L. Chen, Y. Leprince-Wang, and D. Yu, “Formation mechanism of homo-epitaxial morphology on ZnO (000±1) polar surfaces,” Crystengcomm Vol. 15 (2013) p. 4249.
[177] C. Tang, M. J. S. Spencer, and A. S. Barnard, “Activity of ZnO polar surface: an insight from surface energies,” Phys. Chem. Chem. Phys. Vol. 16 (2014) p. 22139.
[178] M. H. Jung, and M. J. Chu, “Synthesis of hexagonal ZnO nanodrums, nanosheets and nanowires by the ionic effect during the growth of hexagonal ZnO crystals,” J. Mater. Chem. C Vol. 2 (2014) p. 6675.
[179] A. Lajn, H. V. Wenckstern, Z. Zhang, C. Czekalla, G. Biehne, J. Lenzner, H. Hochmuth, M. Lorenz, and M. Grundmann, “Properties of reactively sputtered Ag, Au, Pd, and Pt Schottky contacts on n-type ZnO,” J. Vac. Sci. Technol. B Vol.27 (2009) 1769.
[180] A. Echresh, C. O. Chey, M. Z. Schoushtari, V. Khranovskyy, O. Nur, and M. Willander, “UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process,” J. Alloy. Compd. Vol. 632 (2015) p. 165.
[181] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu, “Ultraviolet ZnO nanorods photosensors,” Langmuir Vol. 26 (2010) p. 603.
[182] J. M. Wu, and C. H. Kuo, “Ultraviolet photodetectors made from SnO2 nanowires,” Thin Solid Films Vol. 517 (2009) p. 3870.
[183] H. Liu, Z. Zhang, L. Hu, N. Gao, L. Sang, M. Liao, R. Ma, F. Xu, and X. Fang, “New UV-A photodetector based on individual potassium niobate nanowires with high performance,”Adv. Opt. Mater. Vol. 2 (2014) p. 771.
[184] B. H. Liu, A. Boscoboinik, Y. Cui, S. Shaikhutdinov, and H. J. Freund, “Stabilization of ultrathin zinc oxide films on metals: Reconstruction versus hydroxylation,” J. Phys. Chem. C Vol. 119 (2015) p. 7842.
[185] S. K. Mohanta, A. Nakaura, G. Tabares, A. Hierro, Á, Guzmán, E. Muñoz, and J. Temmyo, “Electrical characterization of Schottky contacts to n-MgZnO films,” Thin Solid Films Vol.548 (2013) p. 539.
[186] J. Liu, X. Chen, W. Wang, Y. Liu, Q. Huang, and Z. Guo, “Self-assembly of [101 ̅0] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity,” Crystengcomm Vol. 13 (2011) p. 3425.
[187] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, “Photoconductivity of ultrathin zinc oxide films,” Jpn. J. Appl. Phys. Vol. 33 (1994) 6611.
[188] Q. H. Li, T. Gao, Y. H. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed form ZnO nanowire films by photocurrent mesaurements,” Appl. Phys. Lett. 86, 123117 (2005).
[189] P. K. Kannan, R. Saraswathi, and J. B. B. Rayappan, “A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film,” Sens. Actuator A-Phys. Vol. 164 (2010) p. 8.
[190] Z. Jin, C. Xu, C. Yang, J. Guo, F. Sheng, and X. Chen, “First principle calculation of polar and nonpolar molecule adsorption on ZnO (0001) and (101 ̅0) surface,” Nanosci. Nanotechnol. Lett. 5, (2013) 110.
[191] S. L. Bai, J. W. Hu, D. Q. Li, R. X. Luo, A. F. Chen, and C. C. Liu, “Quantum-sized ZnO nanoparticles: Synthesis, characterization and sensing properties for NO2,” J. Mater. Chem. Vol. 21 (2011) p. 12888.
[192] S. Singh, and S. Park, “Fabrication and characterization of Al:ZnO based MSM ultraviolet photodetectors,” Superlattices Microstruct. Vol. 86 (2015) p. 412.
[193] R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-process high-efficiency p-NiO/n-ZnO heterojuction photodetector,” RSC Adv. Vol. 5 (20158) 14646.
[194] K. E. Knutsen, A. Galeckas, A. Zubiaga, F. Tuomisto, G. C. Farlow, B. G. Svensson, and A. Yu. Kuznetsov, “Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation,” Phys. Rev. B 86 (2012) 121203.
[195] Y. B. Zhang, G. K. L. Goh, K. F. Ooi, and S. Tripathy, “Hydrogen-relate n-type conductivity in hydrothermally grown epitaxial ZnO films,” J. Appl. Phys. Vol. 108 (2010) 083716.
[196] G. Li, J. Zhang, and X. Hou, “Temperature dependence of performance of ZnO-based metel-semiconductor-metal ultraviolet photodetectors,” Sens. Actuator A-Phys. Vol. 209 (2014) p. 149.
[197] C. H. Chao, P. W. Chi, and D. H. Wei, “Investigations on the crystallographic orientation induced surface morphology evolution of ZnO thin films and their wettability and conductivity,” J. Phys. Chem. C Vol. 120 (2016) p. 8210.
[198] C. Park, J. Lee, H. M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C Vol. 3 (2015) p. 2737.
[199] S.S. Shinde, and K.Y. Rajpure, “Fabrication and performance of N-doped ZnO UV photoconductive detector,” J. Alloy. Compd. Vol. 522 (2012) p. 188.
[200] X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting,” Nano Lett. Vol. 9 (2009) p.2331.
[201] D.H. Zhang, “Adsorption and photodesorption of oxygen on the surface and crystallite interfaces of sputtered ZnO films,” Mater. Chem. Phys. Vol. 45 (1996) p. 248.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top