|
[1] A. M. Holmes, Z. Song, H. R. Moghimi, and M. S. Roberts, “Relative penetration of zinc oxide and zinc ions into human skin after application of different zinc oxide formulations,” ACS Nano Vol. 10 (2016) p. 1810. [2] J. Lee, D. C. Sorescu, and X. Deng, “Tunable lattice constant and band gap of single- and few-layer ZnO,” J. Phys. Chem. Lett. Vol. 7 (2016) p. 1335. [3] Y. S. Kim, W. P. Tai, and S. J. Shu, “Effects of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process,” Thin Solid Films Vol. 491 (2005) p. 153. [4] Y. Chen, D. M. Bagnall, H. J. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. Vol. 84 (1998) 3912. [5] Y. Tchoe, C. H. Lee, J. B. Park, H. Beak, K. Chung, J. Jo, M. Lim, and G. C. Yi, “Microtube light-emitting diode arrays with metal cores,” ACS Nano Vol. 10 (2016) p. 3114. [6] C. J. Barnett, O. Kryvchenkova, N. A. Smith, L. Kelleher, T. G. G. Maffeis, and R. J. Cobley, “The effects of surface stripping ZnO nanorods with argon bombardment,” Nanotechnology Vol. 26 (2015) 415701. [7] A. Marcu, I. Nicolae, and C. Viespe, “Active surface geometrical control of noise in nanowire-SAW sensors,” Sens. Actuators B: Chem. Vol. 231 (2016) p. 469. [8] J. Cui, L. Shi, T. Xie, D. Wang, and Y. Lin, “UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures,” Sens. Actuators B: Chem. Vol. 227 (2016) p. 220. [9] B. Yin, H. Zhang, Y. Qiu, Y. Chang, J. Lei, D. Yang, Y. Luo, Y. Zhao, and L. Hu, “Piezo-phototronic effect enhanced pressure sensor based on ZnO/NiO core/shell nanorods array,” Nano Energy Vol. 21 (2016) p. 106. [10] A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, “Growth of highly c-axis-oriented ZnO nanorods on ZnO/glass substrate: Growth mechanism, structural, and optical properties,” J. Phys. Chem. C Vol. 113 (2009) p. 14715. [11] C. Noguera, “Polar oxide surface,” J. Phys.: Condens. Metter Vol. 12 (2000) R367. [12] Y. Li, Y. Z. Zhang, H. P. He, Z. Z. Ye, J. Jiang, J. G. Lu, and J. Y. Huang, “Epitaxial growth of non-polar m-plane ZnO thon films by pulsed laser deposition,” Mater. Res. Bull. Vol. 47 (2012) p. 2235. [13] T. Moriyama, and S. Fujita, “Growth behavior of nonpolar ZnO on m-plane and r-plane sapphire by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. Vol. 44 (2005) 7919. [14] S. K. Shaikh, S. I. Inamdar, V. V. Ganbavle, and Y. K. Rajpure, “Chemical bath deposited ZnO thin film based UV photoconductive detector,” J. Alloy. Compd. Vol. 664 (2016) p. 242. [15] S. Safa, R. Sarraf-Mamoory, and R. Azimirad, “Investigation of reduced graphene oxide on ultra-violet detection of ZnO thin film,” Physica E Vol. 57 (2014) p. 155. [16] X. Han, W. Du, R. Yu, C. Pan, and Z. L. Wong, “Piezo-phototronic enhanced UV sensing based on a nanowire photodetector array,” Adv. Mater. Vol. 27 (2015) p. 7963. [17] C. H. Chao, W. J. Weng, and D. H. Wei, “Enhanced UV photodetector response and recover times using nonpolar ZnO sensing layer,” J. Vac. Sci. & Technol. A Vol. 34 (2016) 02D106. [18] H.B. Yu, E.A. Azhar, T. Belagodu, S. Lim, and S. Dey, “ZnO nanowire based visible-transparent ultraviolet detectors on polymer substrates,” J. Appl. Phys. Vol. 111 (2012) 102806. [19] X.W. Fu, Z.M. Liao, J. Xu, X.S. Wu, W. Guo, and D.P Yu, “Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects,” Nanoscale Vol. 5 (2013) p. 916. [20] C. J. Ku, P. Reyes, Z. Duan, W. C. Hong, R. Li, and Y. Lu, “MgxZn1-xO thin-film transistor-based UV photodetector with enhanced photoresponse,” J. Electron. Mater. Vol. 44 (2015) p. 3471. [21] Y. Su, Z. Wu, X. Wu, Y. Long, H. Zhang, G. Xie, X. Du, H. Tai, and Y. Jiang, “Enhancing responsivity of ZnO nanowire based photodetectors by piezo-phototronic effect,” Sens. Actuator A-Phys. Vol. 241 (2016) p. 169. [22] E. Cagin, J. Yang, W. Wang, J. D. Phillips, S. K. Hong, J. W. Lee, and J. Y. Lee, “Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy,” Appl. Phys. Lett. Vol. 92 (2008) 233505. [23] J. Elanchezhiyan, K. R. Bae, W. J. Lee, B. C. Shin, and S. C. Kim, “Growth and characterization of non-polar ZnO thin films by pulsed laser deposition,” Mater. Lett. Vol. 64 (2010) p. 1190. [24] C. M. Lai, Y. E. Huang, K. Y. Kou, C. H. Chen, L. W. Tu, and S. W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. Vol. 107 (2015) 022110. [25] C. Y. Lee, C. Chen, L. Chang, and M. M. C. Chou, “Growth of nonpolar ZnO films on (100) β-LiGaO2 substrates by molecular beam epitaxy,” J. Cryst. Growth Vol. 407 (2014) p.11. [26] M. R. Alenezi, A. S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliantis, S. J. Henley, and S. R. P. Silva, “Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors,” J. Phys. Chem. C Vol. 117 (2013) p. 17850. [27] P. Soundarrajan, and K. Sethuraman, “Interface energy barrier tailoring the morphological structure evolution from ZnO nano/micro rod arrays to microcrystalline thin films by Mn doping,” RSC Adv. Vol. 5 (2015) p.44222. [28] M. D. Barankin, E. Gonzalez, II, A. M. Ladwig, and R. F. Hicks, “Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature,” Sol. Energy Mater. Sol. Cells Vol. 91 (2007) p.924. [29] D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res. Vol. 38 (2008) p. 71. [30] H. Morkoç, and Ü. Özgür, “Zinc oxide: Fundamentals, materials, and device technology,” first ed. Wiley-VCH, UK. [31] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter Vol. 16 (2004) R829. [32] D. Moore, and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructure,” J. Mater. Chem. Vol. 16 (2006) p. 3898. [33] S. Charnvanichborikarn, M. T. Myers, L. Shao, and S. O. Kucheyev, “Enhanced radiation tolerance of non-polar-terminated ZnO,” J. Appl. Phys. Vol. 114 (2013) 213512. [34] R. Deng, B. Yao, Y. F. Li, B. H. Li, Z. Z. Zhang, H. F. Zhao, J. Y. Zhang, D. X. Zhao, D. Z. Shen, X. W. Fan, L. L. Yang, and Q. X. Zhao, “Surface morphology, structural and optical properties of polar and non-polar ZnO thin films: A comparative study,” J. Cryst. Growth Vol. 311 (2009) p. 4398. [35] K. H. Baik, H. Kim, J. Kim, S. Jung, and S. Jang, “Nonpolar light emitting diode with sharp near-ultraviolet emissions using hydrothermally grown ZnO on p-GaN,” Appl. Phys. Lett. Vol. 103 (2013) 091107. [36] D. C. Look, G. C. Farlow, P. Reunchan, S. S. Limpijumnong, S. B. Zhang, and K. Nordlumd, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. Vol. 95 (2005) 225502. [37] T. Y. Chiang, C. L. Dai, and D. M. Lian, “Influence of growth temperature on the optical and structural properties of ultrathin ZnO films,” J. Alloy. Compd. Vol. 509 (2011) p. 5623. [38] M. Yang, K. Sun, and N. A. Kotov, “Formation and assembly-disassembly processes of ZnO hexagonal pyramids driven by dipolar and excluded volume interactions,” J. Am. Chem. Soc. Vol. 132 (2010) p. 1860. [39] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls,” Adv. Funct. Mate. Vol. 20 (2010) p. 561. [40] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chen, D. L. Philips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B Vol. 110 (2006) p. 20865. [41] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. Vol. 79 (1996) 7983. [42] Y. Jiao, H. J. Zhu, M. J. Zhou, X. F. Wang, and Q. Li, “Suppression of green emission in ZnO nanorods: A discussion in surface and interior structural quality manipulation,” J. Phys. Chem. C Vol. 114 (2010) p. 208. [43] Y. Gomg, T. Andelman, G. F. Neumark, S. O’Brian, and I. L. Kuslovsly, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett. Vol. 2 (2007) p. 297. [44] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principle study of native point defects in ZnO,” Phys. Rev. B Vol. 61 (2000) 15019. [45] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. Vol. 82 (1999) 2552. [46] C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B Vol. 308-310 (2001) p. 899. [47] S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilão, J. Piroto Duarte, N. Ayres de Campos, A. Weidinger, R. L. Lichti, and S. J. C. Irvine, “Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide,” Phys. Rev. Lett. Vol. 86 (2001) 2601. [48] Y. M. Strzhemechny, H. L. Mosbacker, D. C. Look, D. C. Reynolds, C. W. Litton, N. Y. Garces, N. C. Giles, L. E. Halliburton, S. Niki, and L. J. Brillson, “Remote hydrogen plasma doping of single crystal ZnO,” Appl. Phys. Lett. Vol. 84 (2004) 2545. [49] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett. Vol. 85 (2000) 1012. [50] A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanni, C. Sedrati, Y. Bouachibe, and C. Benazzouz, “Preparation and characterization of Al-doped ZnO piezoelectric thin films grown by pulsed laser deposition,” Ceram. Int. Vol. 42 (2016) p. 6701. [51] J. Nomoto, H. Makino, and T. Yamamoto, “Limiting factors of carrier concentration and transport of polycrystalline Ga-doped ZnO films deposited by ion plating with dc arc discharge,” Thin Solid Films Vol. 601 (2016) p. 13. [52] Z. H. Wang, Z. W. Tian, D. M. Han, and F. B. Gu, “Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO,” ACS Appl. Mater. Interfaces Vol. 8 (2016) p. 5466. [53] D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. T. Pantelides, “Acceptor doping in ZnSe versus ZnTe,” Appl. Phys. Lett. Vol. 63 (1993) 1375. [54] A. Onodera, N. Tamaki, K, Jin, and H. Yamashita, “Ferroelectric properties in piezoelectric semiconductor Zn1-xMxO (M = Li, Mg),” Jpn. J. Appl. Phys., Part 1 Vol. 36 (1997) p. 6008. [55] A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A Vol. 9 (1991) p.286. [56] T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura, and T. Ito, “Ferroelectricity in Li-doped ZnO:X thin films and their application on optical switching devices,” Jpn. J. Appl. Phys., Part 1 Vol. 40 (2001) p. 5615. [57] W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B Vol. 73 (2006) 024117. [58] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. Vol. 92 (2004) 155504. [59] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B Vol. 61 (2000) 15019. [60] X. Yan, D. Xu, and D. Xue, “〖"SO" 〗_"4" ^"2-" ions direct the one-dimensional growth of 5Mg(OH)2‧MgSO4‧2H2O,” Acta Mater. Vol. 55 (2007) p. 5747. [61] D. Xu, and D. Xue, “Chemical bond analysis of the crystal growth of KDP and ADP,” J. Cryst. Growth Vol. 286 (2006) p. 108. [62] J. Wu, and D. Xue, “Progress of science and technology of ZnO as advanced material,” Sci. Adv. Mater. Vol. 3 (2011) p.127. [63] O. Qgbuu, Q. Du, H. Lin, L. Li, Y. Zou, E. Koontz, C. Smith, S. Danto, K. Richardson, and J. Hu, “Impact of Stoichiometry on structural and optical properties of sputter deposited multicomponent tellurite glass films,” J. Am. Ceram. Soc. Vol. 98 (2015) p. 1731. [64] M. Suja, S. B. Bashar, M. M. Morshed, and J. Liu, “Realization of Cu-doped p-type ZnO thin films by molecular beam epitaxy,” ACS Appl. Mater. Interfaces Vol. 7 (2015) p. 8894. [65] C. Triolo, E. Fazio, F. Neri, A. M. Mezzasalma, S. Trusso, and S. Patanè, “Correlation between structural and electrical properties of PLD prepared ZnO thin films used as a photodetector material,” Appl. Surf. Sci. Vol. 359 (2015) p. 266. [66] M. L. Addonizio, “Preparation method of double-textured ZnO:B films deposited by MOCVD on plasma etched polymer buffer,” J. Alloy. Compd. Vol. 622 (2015) p. 851. [67] R. Masuda, C. W. Hsu, M. Eriksson, Y. Kumagai, A. Koukitu, and P. O. Holtz, “Improvements in optical properties of (0001) ZnO layers growth on (0001) sapphire substrates by halide vapor phase epitaxy using thick buffer layers,” Jpn. J. Appl. Phys., Part 1 Vol. 51 (2012) 031103. [68] J. Narayan, K. Dovidenko, A. K. Sharma, and S. Oktyabrsky, “Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures,” J. Appl. Phys. Vol. 84 (1998) 2597. [69] P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, “Growth of high-quality epitaxial ZnO films on α-Al2O3,” J. Cryst. Growth Vol. 201-202 (1999) p. 627. [70] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. Vol. 84 (1998) 3912. [71] P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, S. Niki, N. Nakahara, T. Tanabe, and H. Takasu, “Uniaxial locked epitaxy of ZnO on the a face of sapphire,” Appl. Phys. Lett. Vol. 77 (2000) 1801. [72] Y. Ma, G. Du, X. Wang, W. Li, J. Yin, D. Qiu, B. Song, X. Zhang, Y. Zhang, and D. Liu, “Growth and characteristics of ZnO thin film on CaF2 (11-21) substrate by meralorganic vapor phase epitaxy,” Appl. Surf. Sci. Vol. 243 (2005) p. 24. [73] M. B. Bouziuraa, A. En Naciri, A. Moadhen, H. Rinnert, M. Guendouz, Y. Battie, A. Chaillou, M. A. Zaibi, and M. Oueslati, “Effects of silicon porosity on physical properties of ZnO films,” Mater. Chem. Phys. Vol. 175 (2016) p. 233. [74] S. M. Lee, K. B. Kim, H. J. Ko, and D. C. Oh, “Dependence of substrate temperature and working gas ratio on ZnO films grown on (001) GaAs substrates by RF-sputtering,” J. Nanoelectron. Optoelectron. Vol. 11 (2016) p. 250. [75] R. Simura, K. Sugiyama, A. Nakatsuka, and T. Fukuda, “High-temperature thermal expansion of ScAlMgO4 for substrate application of GaN and ZnO epitaxial growth,” Jpn. J. Appl. Phys. Vol. 54 (2015) 075503. [76] X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorods inorganic/organic heterostructures light-emitting diode emitting at 342 nm,” Nano let. Vol. 8 (2008) p. 1219. [77] T. Zhou, M. Lu, Z. Zhang, H. Gong, W. S. Chin, and B. Liu, “Synthesis and characterization of multifunctional FePt/ZnO core-shell nanoparticles,” Adv. Mater. Vol. 22 (2010) p. 403. [78] Z. L. Wang, “Nanostructures of zinc oxide,” Mater. Today Vol. 7 (2004) p.26. [79] N. Srinatha, Y. S. No, V. B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A, M. Umarji, and W. K. Choi, “Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin films,” RSC Adv. Vol. 6 (2016) p. 9779. [80] B. H. Lin, W. R. Liu, C. Y. Lin, S. T. Hsu, S. Yang, C. C. Kuo, C. H. Hsu, W. F. Hsieh, F. S. S. Chien, and C. S. Chan, “Single domain m-plane ZnO grown on m-plane sapphire by radio frequency magnetron sputtering,” ACS Appl. Mater. Interfaces. Vol. 4 (2012) p. 5333. [81] H. Akazawa, “Highly conductive, undoped ZnO thin films deposited by electron-cyclotron-resonance plasma sputtering on silica glass substrate,” Thin Solid Films Vol. 518 (2009) p. 22. [82] J. R. Arthur, “Molecular beam epitaxy,” Surf. Sci. Vol. 500 (2002) p. 189. [83] M. Henini, “Molecular beam epitaxy from research to mass-production- Part 1,” III-Vs Review, Vol. 9 (1996) p. 32. [84] L. W. Martin, Y. H. Chu, and R. Ramech, “Advanced in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films,” Mater. Sci. Eng. R-Rep. Vol. 68 (2010) p. 89. [85] J. H. Kim, J. H. Roh, K. J. Lee, S. J. Moon, J. W. Kim, K. M. Do, B. M. Moon, and S. M. Koo, “Growth and electrical properties of nonpolar and polar Ga-doped ZnO thin films on LaAlO3 and SrTiO¬3,” J. Crys. Grow Vol. 334 (2011) p. 72. [86] J. Sun, D. A. Mourey, D. Zhao, and T. N. Jackson, “ZnO thin film, device, and circuit fabrication using low-temperature PECVD processes,” J. Electron. Mater. Vol. 37 (2008) p. 755. [87] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011 ̅2) sapphire by metalorganic chemical vapor deposition,” J. Appl. Phys. Vol. 85 (1999) 2595. [88] T. Lazerand, and D. Lishan, “Silicon nitride for MEMS applications: LPCVD and PECVD process comparison,” Plasma-Therm, www.plasmatherm.com. [89] C. V. Thompson and R. Carel, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. Vol. 30 (2000) p. 159. [90] K. S. Sree Harsha, “Principle of physical vapor deposition of thin films,” Elsevier Ltd., Oxford, 1st edition (2006). [91] C. V. Thompson, “Texture development in polycrystalline thin films,” Mater. Sci. Eng, B Vol. 32 (1995) p. 211. [92] A. A. Iliadis, R. D. Vispute, T. Vemkatesan, and K. A. Jones, “Ohmic metallization technology for wide band-gap semiconductor,” Thin Solid Films Vol. 420-421 (2002) p. 478. [93] M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN” Appl. Phys. Lett. Vol. 64 (1994) 1003. [94] S. H. Kim, K. K. Kim, S. J. Park, and T. Y. Seong, “Thermally stable and low resistance Re/Ti/Au Ohmic contacts to n ZnO,” J. Electronchem. Soc. Vol. 152 (2005) p. G169. [95] N. R. D’Amico, G. Cantele, C. A. Perroni, and D. Ninno, “Electronic properties and Schottky barriers at ZnO-metal interfaces from first principles,” J. Phys. –Condes. Matter Vol. 27 (2015) 015006. [96] X. Hu, J. Sun, C. Qian, F. Liu, J. Yang, G. H. Guo, and Y. Gao, “Low contact resistance on solid electrolyte-gated ZnO field-effect transistors with ferromagnetic contacts,” J. Mater. Chem. C Vol. 4 (2016) p.150. [97] G. H. Nam, S. H. Beak, and I. K. Park, “Growth of ZnO nanorods on graphite substrate and its application for Schottky diode,” J. Alloy. Compd. Vol. 613 (2014) p. 37. [98] R. J. Collins, and D. G. Thomas, “Photoconduction and surface effects with zinc oxide crystals,” Phys. Rev. Vol. 112 (1958) p. 388. [99] S. Hullavarad, N. Hullavarad, D. Look, and B. Claflin, “Persistent photoconductivity studies on nanostructured ZnO UV sensors,” Nanoscale Res. Lett. Vol. 4 (2009) p. 1421. [100] R. Calarci, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stiuca, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. Vol. 5 (2005) p. 981. [101] A. B. Djurišić, and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small, Vol. 2 (2006) p. 944. [102] R. Y. Gunji, M. Nakano, A. Tsukazaki, A. Ohtomo, T. Fukumura, and M. Kawasaki, “Polymer Schottky contact on O-polar ZnO with silane coupling agent as surface protective layer,” Appl. Phys. Lett. Vol. 93 (2008) 012104. [103] L. J. Brillson, and Y. Lu, “ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys. Vol. 109 (2011) 121301. [104] Y. K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, and R. Adelung, “Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing,” ACS Appl. Mater. Interfaces. Vol. 7 (2015) p. 14303. [105] J. Liu, R. Lu, G. Xu, J. Wu, P. Thapa, and D. Moore, “Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro-nanowire arrays on graphene: Towards high-performance nanohybrid ultraviolet photodetectors,” Adv. Funct. Mater. Vol. 23 (2013) p. 4941. [106] W. Wang, J. Qi, Q. Wang, Y. Huang, Q. Liao, Y. Zhang, “Single ZnO nanotetrapod-based sensors for monitoring localized UV irradiation,” Nanoscale Vol. 5 (2013) p. 5981. [107] S. Rackauskas, K. Mustonen, T. Jarvinen, M. Mattila, O. Klimova, H. Jiang, O. Tolochko, H. Lipsanen, E. I. Kauppinen, and A. G. Nasibulin, “Synthesis of ZnO tetrapods for flexible and transparent UV sensors,” Nanotechnology Vol. 23 (2012) 095502. [108] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor vy utilizing Schottky contact and surface functionalization” Appl. Phys. Lett. Vol. 94 (2009) 191103. [109] M. Chen, L. Hu, J. Xu, M. Liao, L. Wu, and X. Fang, “ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector,” Small Vol. 7 (2011) p. 2449. [110] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire,” Nano Lett. Vol. 15 (2015) p. 3988. [111] I. C. Noyan, and J. B. Cohen, “Residual stress measurement by diffraction and interpretation,” Spinger-Verlag, New York Inc., (1987). [112] http://ssp.physics.upatras.gr/X-Ray%20Diffraction.html. [113] https://fas.dsi.a-star.edu.sg/equipments/xps_10.aspx [114] http://www.renishaw.com/en/photoluminescence-explained--25809. [115] http://www.farmfak.uu.se/farm/farmfyskem/instrumentation/afm.html. [116] T. K. Subramanyam, S. Srinivasulu Naidu, and S. Uthanna, “Effect of substrate temperature on the physical properties of DC reactive magnetron sputtered ZnO films,” Opt. Mater. Vol. 13 (1999) p. 239. [117] H. Iwanaga, A. Kunishige, and S. Takeuchi, “Anisotropic thermal expansion in wurtzite-type crystals,” J. Mater. Sci. Vol. 35 (2000) p. 2451. [118] M. Okaji, “Absolute thermal expansion measurements of single-crystal silicon in the range 300-1300 K with and interferometric dilatometer,” Int. J. Thermophys. Vol. 9 (1988) p. 1101. [119] R.W.B. Pearse and A.J. Lichtenberg, “The Identification of Molecular Spectra,” Chapman and Hall, London 4th ed (1976). [120] S. Inguva, C. Gray, E. McGlynn, and J.-P. Mosnier, “Origin of the 3.331 eV emission in ZnO nanorods: Comparison of vapour phase transport and pulsed laser deposition grown nanorods,” J. Lumines. Vol. 175 (2016) p. 117. [121] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrate,” Appl. Phys. Lett. Vol. 79 (2001) p. 943. [122] T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki, and M. Kawasaki, “Radiative and nonrediative excitonic transitions in nonpolar (112 ̅0) and polar (0001 ̅) and (0001) ZnO epilayers,” Appl. Phys. Lett. Vol. 84 (2004) p. 1079. [123] C.L. Yang, J.N. Wang, W.K. Ge, L. Guo, S.H. Yang, and D.Z. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. Vol. 90 (2001) 4489. [124] M. Birkholz, B. Selle, F. Fenske, and W. Fuhs, “Structure-function relationship between preferred orientation of crystallites and electrical resistivity in thin polycrystalline ZnO:Al films,” Phys. Rev. B Vol. 68 (2003) 205414. [125] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. Vol. 4, (2004) p. 1247. [126] M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama, and R. Ghosh, “Ultrafast and reversible gas-sensing of ZnO nanowire arrays grown by hydrothermal technique,” J. Phys. Chem. C Vol. 120, (2016) p. 3019. [127] J. J. Cheng, S. M. Nicaise, K. K. Berggren, and S. Gradečak, “Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays,” Nano Lett. Vol. 16 (2016) p. 753. [128] T. Wang, H. Wu, H. Zheng, J. B. Wang, Z. Wang, C. Chen, Y. Xu, and C. Liu, “Nonpolar light emitting diodes of m-plane ZnO on c-Plane GaN with the Al2O3 interlayer,” Appl. Phys. Lett. Vol. 105 (2013) 141912. [129] P. Biswas, S. Kundu, P. Banerji, and S. Bhunia, “Super rapid response of humidity sensor based on MOCVD grown ZnO nanotips array,” Sens. Actuator B-Chem. Vol. 178 (2013) p. 331. [130] H. Xiong, J. N. Dai, X. Hui, Y. Y. Fang, W. Tian, D. X. Fu, C. Q. Chen, M. Li, and Y. He, “Effects of the AlN buffer layer thickness on the properties of ZnO films grown on c-sapphire substrate by pulsed laser deposition,” J. Alloy. Compd. Vol. 554 (2013) p. 104. [131] L. Q. Zhang, B. Lu, Y. H. Lu, Z. Z. Ye, J. G. Liu, X. H. Pan, and J. Y. Huang, “Non-polar p-type Zn0.94Mn0.05Na0.01O texture: Growth mechanism and codoping effect,” J. Appl. Phys. Vol. 113 (2013) 083513. [132] L. Fanni, B. A. Aebersold, D. T. L. Alexander, L. Ding, M. Morales, S. Nicolay, and C. Ballif, “C-texture versus a-texture low pressure metalogranic chemical vapor deposition ZnO films: Lower resistivity despite smaller grain size,” Thin Solid Film Vol. 565 (2014) p. 1. [133] N. Qin, Q. Xiang, H. Zhao, J. Zhang, and J. Xu, “Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties,” Crystengcomm Vol. 16 (2014) p. 7062. [134] P. Sundara Venkatesh, and K. Jeganathan, “Investigations on the morphological evolution of zinc oxide nanostructures and their optical properties,” Crystengcomm Vol. 16 (2014) p. 7426. [135] M. Wang, L. Jiang, Y. Wang, E. J. Kim, and S. H. Hahn, “Growth mechanism of preferred crystallite orientation in transparent conducting ZnO:In thin films,” J. Am. Ceram. Soc. Vol. 98 (2015) p. 3022. [136] T. Morita, S. Ueno, T. Tokunaga, E. Hosono, Y. Oaki, H. Imai, H. Matsuda, H. Zhou, M. Hagiwara, and S. Fujihara, “Fabrication of transparent ZnO thick film with unusual orientation by the chemical bath deposition,” Cryst. Growth Des. Vol. 15 (2015) p. 3150. [137] M. A. Rueter, and J. M. Vohs, “The surface reactions of ethyl groups on Si(100) formed via dissociation of adsorbed diethylzinc,” Surf. Sci. Vol. 262 (1992) p. 42. [138] A. van der Drift, “Evolutionary selection, a principle growth orientation in vapour-deposited layer,” Phillips Res. Rep. Vol. 22 (1967) p. 267. [139] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films: Control of self-texture,” J. Cryst. Growth Vol. 130 (1993) p. 269. [140] A. Umar, and Y. B. Hahn, “Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation,” Appl. Phys. Lett. Vol. 88 (2006) 173120. [141] P. X. Gao, and Z. L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process,” J. Phys. Chem. B Vol. 108 (2004) p. 7534. [142] S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan, and Y. Hayalawa, “Controlled synthesis of organic ligand passivated ZnO nanostructures and their photocatalytic activity under visible light irradiation,” Dalton Trans. Vol. 44 (2015) p. 10490. [143] M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. Vol. 16 (2014) p. 25093. [144] F. Li, Y. Ding, P. Gao, X. Xin, and Z. L. Wang, “Single-crystal hexagonal disks and rings of ZnO: Low-temperature, large-scale synthesis and growth mechanism,” Angew. Chem. Vol. 116 (2004) p. 5350. [145] W. Niu, H. Xu, Y. Guo, Y. Li, Z. Ye, and L. Zhu, “The effect of sulfur on the electrical properties of S and N co-doped ZnO thin films: Experiment and first-principles calculations,” Phys. Chem. Chem. Phys. Vol. 17 (2015) p. 16705. [146] S. Dhara, and P. K. Giri, “Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film,” Thin Solid Film Vol. 520 (2012) p. 5000. [147] S. K. Panda, and C. Jacob, “Preparation of transparent ZnO thin film and their application in UV sensor devices,” Solid-State Electron. Vol. 73 (2012) p. 44. [148] B. J. Jin, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Film Vol. 366 (2000) p. 107. [149] C. Park, J. Lee, H. M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C Vol. 3 (2015) p. 2737. [150] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bai, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. Vol. 7 (2007) p. 1003. [151] I. Soumahoro, S. Colis, G. Schmerber, C. Leuvrey, S. Barre, C. Ulhap-Bouillet, D. Muller, M. Abd-lefdil, N. Hassanain, J. Petersen, et al. “Structural, optical, spectroscopic and electrical properties of Mo-doped ZnO thin films grown by radio frequency magnetron sputtering,” Thin Solid Films Vol. 566 (2014) p. 61. [152] K. Tang, S. Gu, J. Liu, J. Ye, S. Zhu, and Y. Zheng, “Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO thin films,” J. Alloy. Compd. Vol. 653 (2015) p. 643. [153] S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, “Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films,” J. Phys. D: Appl. Phys. Vol. 41 (2008) 105109. [154] M. Brandt, H. von Wenckstern, H. Schmidt, A. Rahm, G. Biehne, G. Benndorf, H. Hochmuth, M. Lorenz, C. Meinecke, T. Butz, et al. “High electron mobility of phosphorous-doped homoepitaxial ZnO thin films grown by pulsed-laser deposition,” J. Appl. Phys. Vol. 104 (2008) 013708. [155] P. Ding, X. Pan, J. Huang, B. Lu, H. Zhang, W. Chen, and Z. Ye, “Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy,” Mater. Lett. Vol. 71 (2012) p. 18. [156] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Vol. 28 (1936) p. 988. [157] A. B. D. Cassie, and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. Vol. 40 (1944) p. 546. [158] M. Żenkiewicz, “Methods for the calculation of surface free energy of solids,” J. Achiev. Mater. Manuf. Eng. Vol. 24 (2007) p. 137. [159] P. W. Chi, D. H. Wei, S. H. Wu, Y. Y. Chen, Y. D. Yao, “Photoluminescence and wettability control of NiFe/ZnO heterostructures bilayer films,” RSC Adv. Vol. 5 (2015) p. 96705. [160] R. Molaei, M. R. Bayati, H. M. Alipour, N. A. Estrich, and J. Narayan, “Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates,” J. Phys.:Condens. Matter Vol. 26 (2014) 015004. [161] J. Hu, Y. Sun, W. Zhang, F. Gao, P. Li, D. Jiang, and Y. Chen, “Fabrication of hierarchical structures with ZnO nanowires on micropillars by UV soft imprinting and hydrothermal growth for a controlled morphology and wettability,” Appl. Surf. Sci. Vol. 317 (2014) p. 545. [162] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorods films,” J. Am. Chem. Soc. Vol. 126 (2004) p. 62. [163] X. Wu, L. Zheng, and D. Wu, “Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route,” Langmuir Vol. 21 (2005) p. 2665. [164] G. Kwak, M. Seol, Y. Tak, and K. Yong, “Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation,” J. Phys. Chem. C Vol. 113 (2009) p. 12085. [165] P. X. Gao, and Z. L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process,” J. Phys. Chem. B. Vol. 108 (2004) p.7534. [166] H. Matsui, and H. Tabata, “Self-organized nanostripe arrays of ZnO (10-10) surfaces formed during laser molecular-beam-epitaxy growth,” Appl. Phys. Lett. Vol. 87 (2005) 143109. [167] M. M. C. Chou, D. R. Hang, C. Chen, and Y. H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large LiGaO2 (100) substrates,” Thin Solid Films Vol. 519 (2011) p. 3627. [168] Y. T. Ho, W. L. Wang, C. Y. Peng, W. C. Chen, M. H. Liang, J. S. Tian, and L. Chang, “Substrate engineering of LaAlO3 for non-polar ZnO growth,” Thin Solid Films Vol. 518 (2010) p. 2988. [169] C. de Mello Donegá, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh, and A. Meijerink, “Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals,” J. Phys. Chem. B Vol. 7 (2003) p. 489. [170] Z. Yang, M. Wang, X. Song, G. Yan, Y. Ding, and J. Bai, “High-performance ZnO/Ag nanowire/ZnO composite film UV photodetectors with large area and low operating voltage,” J. Mater. Chem. C Vol. 2 (2014) p. 4312. [171] J. I. Sohn, W. K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, J. H. Warner, S. Cha, and J. M. Kim, “Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity,” Sci Rep Vol. 4 (2014) p. 5680. [172] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science Vol. 297 (2001) p. 1947. [173] C. H. Chao, and D. H. Wei, “Growth of non-polar ZnO thin films with different working pressures by plasma enhanced chemical vapor deposition,” Jpn. J. Appl. Phys. Vol. 53 (2014) 11RA05. [174] J. Chen, H. Deng, H. Ji, and Y. Tian, “Effect of substrate microstructure on the misorientation of a-plane ZnO film investigated using x-ray diffraction,” J. Vac. Sci. Technol. A Vol. 29 (2011) 03A116. [175] G. M. Ali, and P. Chakrabarti, “Fabrication and characterization of thin film ZnO Schottky contacts based UV photodetectors: A comparative study,” J. Vac. Sci. Technol. B Vol. 30 (2012) 031206. [176] R. Zhu, Q. Zhao, J. Xu, L. Chen, Y. Leprince-Wang, and D. Yu, “Formation mechanism of homo-epitaxial morphology on ZnO (000±1) polar surfaces,” Crystengcomm Vol. 15 (2013) p. 4249. [177] C. Tang, M. J. S. Spencer, and A. S. Barnard, “Activity of ZnO polar surface: an insight from surface energies,” Phys. Chem. Chem. Phys. Vol. 16 (2014) p. 22139. [178] M. H. Jung, and M. J. Chu, “Synthesis of hexagonal ZnO nanodrums, nanosheets and nanowires by the ionic effect during the growth of hexagonal ZnO crystals,” J. Mater. Chem. C Vol. 2 (2014) p. 6675. [179] A. Lajn, H. V. Wenckstern, Z. Zhang, C. Czekalla, G. Biehne, J. Lenzner, H. Hochmuth, M. Lorenz, and M. Grundmann, “Properties of reactively sputtered Ag, Au, Pd, and Pt Schottky contacts on n-type ZnO,” J. Vac. Sci. Technol. B Vol.27 (2009) 1769. [180] A. Echresh, C. O. Chey, M. Z. Schoushtari, V. Khranovskyy, O. Nur, and M. Willander, “UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process,” J. Alloy. Compd. Vol. 632 (2015) p. 165. [181] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu, “Ultraviolet ZnO nanorods photosensors,” Langmuir Vol. 26 (2010) p. 603. [182] J. M. Wu, and C. H. Kuo, “Ultraviolet photodetectors made from SnO2 nanowires,” Thin Solid Films Vol. 517 (2009) p. 3870. [183] H. Liu, Z. Zhang, L. Hu, N. Gao, L. Sang, M. Liao, R. Ma, F. Xu, and X. Fang, “New UV-A photodetector based on individual potassium niobate nanowires with high performance,”Adv. Opt. Mater. Vol. 2 (2014) p. 771. [184] B. H. Liu, A. Boscoboinik, Y. Cui, S. Shaikhutdinov, and H. J. Freund, “Stabilization of ultrathin zinc oxide films on metals: Reconstruction versus hydroxylation,” J. Phys. Chem. C Vol. 119 (2015) p. 7842. [185] S. K. Mohanta, A. Nakaura, G. Tabares, A. Hierro, Á, Guzmán, E. Muñoz, and J. Temmyo, “Electrical characterization of Schottky contacts to n-MgZnO films,” Thin Solid Films Vol.548 (2013) p. 539. [186] J. Liu, X. Chen, W. Wang, Y. Liu, Q. Huang, and Z. Guo, “Self-assembly of [101 ̅0] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity,” Crystengcomm Vol. 13 (2011) p. 3425. [187] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, “Photoconductivity of ultrathin zinc oxide films,” Jpn. J. Appl. Phys. Vol. 33 (1994) 6611. [188] Q. H. Li, T. Gao, Y. H. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed form ZnO nanowire films by photocurrent mesaurements,” Appl. Phys. Lett. 86, 123117 (2005). [189] P. K. Kannan, R. Saraswathi, and J. B. B. Rayappan, “A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film,” Sens. Actuator A-Phys. Vol. 164 (2010) p. 8. [190] Z. Jin, C. Xu, C. Yang, J. Guo, F. Sheng, and X. Chen, “First principle calculation of polar and nonpolar molecule adsorption on ZnO (0001) and (101 ̅0) surface,” Nanosci. Nanotechnol. Lett. 5, (2013) 110. [191] S. L. Bai, J. W. Hu, D. Q. Li, R. X. Luo, A. F. Chen, and C. C. Liu, “Quantum-sized ZnO nanoparticles: Synthesis, characterization and sensing properties for NO2,” J. Mater. Chem. Vol. 21 (2011) p. 12888. [192] S. Singh, and S. Park, “Fabrication and characterization of Al:ZnO based MSM ultraviolet photodetectors,” Superlattices Microstruct. Vol. 86 (2015) p. 412. [193] R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-process high-efficiency p-NiO/n-ZnO heterojuction photodetector,” RSC Adv. Vol. 5 (20158) 14646. [194] K. E. Knutsen, A. Galeckas, A. Zubiaga, F. Tuomisto, G. C. Farlow, B. G. Svensson, and A. Yu. Kuznetsov, “Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation,” Phys. Rev. B 86 (2012) 121203. [195] Y. B. Zhang, G. K. L. Goh, K. F. Ooi, and S. Tripathy, “Hydrogen-relate n-type conductivity in hydrothermally grown epitaxial ZnO films,” J. Appl. Phys. Vol. 108 (2010) 083716. [196] G. Li, J. Zhang, and X. Hou, “Temperature dependence of performance of ZnO-based metel-semiconductor-metal ultraviolet photodetectors,” Sens. Actuator A-Phys. Vol. 209 (2014) p. 149. [197] C. H. Chao, P. W. Chi, and D. H. Wei, “Investigations on the crystallographic orientation induced surface morphology evolution of ZnO thin films and their wettability and conductivity,” J. Phys. Chem. C Vol. 120 (2016) p. 8210. [198] C. Park, J. Lee, H. M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C Vol. 3 (2015) p. 2737. [199] S.S. Shinde, and K.Y. Rajpure, “Fabrication and performance of N-doped ZnO UV photoconductive detector,” J. Alloy. Compd. Vol. 522 (2012) p. 188. [200] X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, “Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting,” Nano Lett. Vol. 9 (2009) p.2331. [201] D.H. Zhang, “Adsorption and photodesorption of oxygen on the surface and crystallite interfaces of sputtered ZnO films,” Mater. Chem. Phys. Vol. 45 (1996) p. 248.
|