跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱政杰
研究生(外文):Cheng-Chieh Chu
論文名稱:應用實數型-帶電粒子系統搜尋演算法於配電系統饋線重構之研究
論文名稱(外文):A Study on the Applications of Real-Number Strings Charged System Search on Distribution System Feeder Reconfiguration Problems
指導教授:蔡孟伸蔡孟伸引用關係
口試委員:黃培華蕭瑛東劉志文陳昭榮
口試日期:2016-07-25
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:配電系統、饋線重構、帶電粒子系統搜尋演算法、實數編碼
外文關鍵詞:Distribution System、Feeder Reconfiguation、Charged System Search、 Real-Number Encoding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
電力系統的架構主要分為發電系統,輸電系統與配電系統三大部份。配電系統在正常的運轉下,操作人員在調度時除了讓配電系統運轉可以達到有效的電力分配與電力資源應用最大化之目的外,同時必須確保不會違反相關限制條件。這些限制條件如放射狀之拓樸架構、最大電壓降百分比、導線上的容量等。為了能夠有效調度電力資源並符合上列相關的限制條件,饋線重構的操作是常用的技術之一。饋線重構的目的主要分為兩大部份:首先,電力系統正常運轉時,調度員會以平衡饋線負載量、降低線路損失與提高供電品質為主要目標,預期可以提升系統運轉效能;其二,電力系統發生緊急情況時,快速找出故障點並快速隔離故障區域,縮小停電範圍。饋線重構的操作方式是利用改變饋線上的開關投切狀態完成。當系統上的開關狀態發生改變時,系統拓撲也會異動。配電系統所屬的每條饋線上所安裝的開關數量都不一定會相同,隨著配電系統的規模增大,饋線上之開關數量亦相對增加。為了在正常運轉模式下能夠達到更經濟有效的電力品質或在故障發生時即時完成故障區域的隔離,如何決定每個開關狀態的啟閉將是問題的關鍵。由於需要決定開關的投切狀態,因此,饋線重構操作方式可以歸類為一典型的組合型最佳化問題。一般而言,系統調度人員在進行操作時,都會考慮不同的目標。常見的目標包含有降低開關切換的次數、減少饋線的實功損失、提昇系統的平衡度及最小化最大電壓降百分比等。
本論文提出使用帶電粒子系統搜尋演算法以求解饋線重構問題。帶電粒子系統搜尋演算法中,每個粒子都代表一個系統拓撲。為了有效增進演算法之搜尋效能,本論文提出以實數編碼機制進行系統拓撲之描述與分析。透過本論文所提出之實數解碼機制,系統拓樸得以維持系統放射狀的特性而不需要額外進行驗證程序。為了證明所採用的編解碼程序與帶電粒子系統搜尋演算法的有效性,本論文先以單目標問題驗證,目標函數則考慮饋線損失最小化的系統拓樸。並使用三種不同的系統進行驗證。其次,探討多目標饋線重構問題之求解。在多目標問題上,考慮饋線損失、電壓降百分比與開關切換次數三個目標函數,以說明本論文所提方法的有效性。結果顯示、透過本論文所採用的演算法並搭配合適的編解碼操作程序,能有效有效解決單目標與多目標饋線問題最佳化。
Power system architecture is divided into three parts: generation, transmission and distribution. In distribution system, to achieve proper and effective operations, it is necessary to ensure no violation of the constraints exists. The operation constraints include maintaining radial topology, reducing voltage drop percentage and limiting conductor current. In order to dispatch power resources more effectively and avoid any violations of the constraints, feeder reconfiguration is one of the commonly used techniques. The goals of feeder reconfiguration include two parts. First, during normal operation, the dispatchers try to operate the system in a more economical way. Secondly, when an emergency situation occurs, identifying and isolating the problems becomes more important issues. In this case, applying the feeder reconfiguration to isolate the faulted zones, reduce the outage area, and restore the largest customer is a common practice by dispatchers.
Feeder reconfiguration is achieved by changing the statuses of the switches. When the statuses of the switches change, the topology of distribution system is altered In a typical distribution system, the number of switches may be large. To either achieve an economical operation during normal operation; or to isolate the faulted areas during an occurrence of a fault, determining the status of these switches is a difficult task. Thus, feeder reconfiguration can be classified as a typical combination optimization problem. When dealing with the distribution system problems, the dispatchers consider different goals during normal or emergency operations when system reconfiguration needs to be performed. These goals include reducing the number of switches actions, reducing the real power losses, improving the inter-feeder balancing and minimizing the voltage drop percentage.
This dissertation applied the Charged System Search algorithm (CSS) for solving the feeder reconfiguration problem. Each charge particle in the CSS represents a solution which represents a specific distribution system topology. To improve the search efficiency, a novel real-number string decoding technique is proposed. The proposed decoding method maps a particle coordination to a valid radial topology without verification. In order to illustrate the effectiveness of the proposed decodingtechnique with CSS algorithm, a single-objective problem is applied first. Different power topologies (33-Bus, 66-Bus and 248-Bus) are used. Secondly, multi-objective CSS is used for solving three objective problems. The objectives in this dissertation includes primary feeder losses, the voltage drop percentage and the number of switches operations. The results show that the proposed decoding technique integrated with CSS algorithm is able to identify the best solutions comparing with other mean-heuristic algorithms. For the multi-objective problems, the Pareto Front identified by the proposed approach achieves a better one than other algorithms.
中文摘要 i
英文摘要 iii
誌謝……………………. v
目錄……………. vi
表目錄 viii
圖目錄 ix
第一章 緒論 ix
1.1 研究動機 1
1.2 研究目的 3
1.3 文獻回顧 5
1.4 研究方法 7
1.5 論文架構 9
第二章 饋線重構 10
2.1 配電系統 10
2.1.1配電系統簡介 11
2.1.2配電自動化概說 13
2.2 配電系統重構 15
2.2.1配電系統之重構目的 15
2.2.2編碼方式與饋線重構 17
2.3電力潮流計算 22
2.3.1概念 22
2.3.2負載模型介紹 23
2.3.3電力潮流分析運算 25
2.4常用之配電系統重構目標函數 28
2.4.1配電系統之損失計算 28
2.4.2配電系統之最大末端壓降計算 28
2.4.3配電系統之平衡度計算 29
第三章 研究方法 30
3.1群體智慧與饋線重構關係概述 30
3.1.1群集演算法概念 31
3.1.2常見編碼與饋線重構的關係 32
3.1.3多目標最佳化問題與求解方式 35
3.1.4帶電粒子系統搜尋演算法與Pareto最佳化 40
3.2實數編碼設計 41
3.2.1開關實數編碼設計 42
3.2.2區域實數編碼設計 48
3.3帶電粒子系統搜尋演算法 56
3.3.1電磁場理論 56
3.3.2牛頓運動定律 58
3.3.3帶電粒子系統搜尋演算法 59
3.4改良型帶電粒子系統搜尋演算法 64
3.4.1粒子移動評估機制(Particle Moving Evaluation Mechnism, PMEM) 64
3.4.2實數字串-連絡開關-損失對照(RealString TieSwitch Loss Mapping, RTLM) 65
3.4.3改良型粒子系統搜尋演算法 67
3.5應用Pareto-帶電粒子系統搜尋演法於多目標饋線重構之探討 68
3.5.1目標函數向量化之最佳化問題分析 69
3.5.2 Pareto前緣與Pareto最佳解群 71
3.5.3非支配排序的帶電粒子系統搜尋演算法概述 72
3.5.4針對配電系統饋線重構之非支配排序的帶電粒子系統搜尋演算法 75
第四章 結果與分析 77
4.1以實數型帶電粒子系統搜尋演算法求解饋線重構問題 78
4.1.1 33-Bus配電系統 79
4.1.2 66-Bus配電系統 81
4.1.3 248-Bus 配電系統 83
4.2改良型演算法效能分析 87
4.2.1帶電粒子系統搜尋演算法與增強整數編碼粒子群集演算法的演算法分析 87
4.2.2 RTLM & PMEM於帶電粒子系統搜尋演算法的效能分析 88
4.3多目標饋線重饋 91
4.3.1 33-Bus系統 91
4.3.2 248-Bus系統 92
4.4 小結 94
第五章 結論 96
5.1結論 96
5.2未來展望 98
參考文獻…………………………………………………………………………………..100
1. A. L. Morelato and A. Monticelli, "Heuristic search approach to distribution system restoration, " IEEE Trans. on Power Delivery, vol. 4, no. 4, 1989, pp. 2235-2241.
2. M. H. Shih, A. Ghosh and A. Joshi, "A new approach to load balancing and power factor correction in power distribution system" IEEE Trans. on Power Delivery, vol. 15, no. 1, 2000, pp. 417-422.
3. F. T. Dawit and L. L. Kuo, "A novel method of distribution power system reconfiguration using parallel cooperative meta-heuristics," Advanced Robotics and Intelligent Systems (ARIS), Proceedings of 2015 International Conference on 2015, 2015, pp. 1-6.
4. B. Amanulla, C. Saikat and S. N. Singh, "Reconfiguration of Power Distribution Systems Considering Reliability and Power Loss, " IEEE Trans. on Power Delivery, vol. 27, no. 2, 2012, pp. 918-926.
5. 陳裕達,應用交談式基因演算法於配電系統多目標復電問題,碩士論文,國立台灣大學,台北,2000。
6. 柯裕隆,應用派翠網路於配電系統開關操作策略制定之研究,博士論文,國立中山大學,高雄,2001。
7. 簡靖陽,配電系統操作最佳化之研究,博士論文,淡江大學,台北,2001。
8. 吳武昌,以物件導向專家系統進行多時段負載轉供,碩士論文,中原大學,桃園,2002。
9. A. Kaveh, and S. Talatahari, "A novel heuristic optimization method: charged system search, " Acta Mechanica, vol. 213, 2010, pp. 267-289.
10. A. Kaveh, and S. Talatahari, "A charged system search with a fly to boundary method for discrete optimum design of truss structures,” Asian Journal of Civil Engineering (Building and Housing), vol. 11, 2010, pp. 277-293.
11. K. Aoki, T. Ichimori and M. Kanezashi, "Normal state optimal load allocation in distribution system, " IEEE Trans. on Power Delivery, vol. 2, no. 1, 1987, pp.147-155.
12. P. V. Rama, and S. Sivanagaraju, "Radial distribution network reconfiguration for loss reduction and load balancing using plant growth simulation algorithm," International Journal on Electrical Engineering and Informatics, vol. 2, no 4, 2010, pp. 266-277.
13. A. Merlin, and G. Back, "Search for minimum-loss operational spanning tree configuration for an urban power distribution system, " Proceedings of Fifth Power System Conf. (PSCC), Cambridge, U.K., 1975, pp. 1-18.
14. D. Shirmohammadi and H. W. Hong, "Reconfiguration of electric distribution networks for resistive line loss reduction, " IEEE Trans. Power Delivery, vol. 4, no. 2, 1989, pp. 1492-1498.
15. S. Civanlar, J. J. Grainger, H. Yin, and S. H. Lee, "Distribution feeder reconfiguration for loss reduction," IEEE Trans. on Power Delivery, vol. 3, no.3, 1977, pp. 1217-1223.
16. M. E. Baran and F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," IEEE Trans. on Power Delivery, vol. 4, no.2, 1989, pp. 1401-1407.
17. V. Glamocanin, "Optimal loss reduction of distribution networks, " IEEE Trans. On Power System, vol.5, no. 3, 1990, pp. 774-781.
18. A. Morton, and M. Y. Mareels, "An efficient brute-force solution to the network reconfiguration problem, " IEEE Trans. Power Delivery, vol. 15, no. 3, 2000, pp. 996-1000.
19. C. C. Liu, S. J. Lee and K. Vu, "Loss minimization of distribution feeders: optimality and algorithms, " IEEE Trans. on Power Delivery, vol. 4, no. 2, 1989, pp.1281-1289.
20. H. Kim, Y. Ko and K. H. Jung, 1"Artificial neural networks based feeder reconfiguration for loss reduction in distribution systems," IEEE Trans. on Power Delivery, vol. 8, no. 3, 993, pp. 1356-1366.
21. K. S. Kumar, K. Rajalakshmi and S. P. Karthikeyan, "A modified artificial neural network based Distribution Systemreconfiguration for loss minimization," Advances in Electrical Engineering (ICAEE), Proceedings of 2014 International Conference on, 2014, pp. 1-5.
22. H. D. Chiang, "Optimal network reconfigurations in distribution systems: Part I: a new formulation and a solution methodology," IEEE Trans. on Power Delivery, vol. 5, 1990, pp. 1902-1909.
23. W. Chun and Z. C. Hao, "Optimization of network configuration in large distribution systems using plant growth simulation algorithm," IEEE Trans. on Power Systems, vol. 23, no. 1, 2008, pp. 119-126.
24. K. Nara, A. Shiose, M. Kitagawa and T. Ishihara, "Implementation of genetic algorithm for distribution systems loss minimum reconfiguration," IEEE Trans. On Power System, vol. 7, no. 3, 1992, pp. 1044-1051.
25. B. Enacheanu, B. Raison, R. Caire, O.Devaux, W. Bienia and N. HadjSaid, "Radial network reconfiguration using genetic algorithm based on the matroid theory,” IEEE Trans. Power Systems, vol. 23, no. 1, 2008,pp. 186-195.
26. 何碩俞,應用基因演算法於配電系統饋線重組以降低電壓驟降,碩士論文,中原大學,桃園,2002。
27. Y. H. Song, G. S. Wang, A. T. Johns and P. Y. Wang, "Distribution network reconfiguration for loss reduction using fuzzy controlled evolutionary programming, " IEE Proc.-Gener. Transm. Distrib. vol. 144, no. 4, 1997, pp.345-350.
28. W. M. Lin, F. S. Cheng, and M. T. Tsay, "Feeder loss reduction by switching operations with a hybrid programming technique, " IEEE Transmission and Distribution Conference, vol. 2, 1999, pp. 603-608.
29. Y. T. Hsiao, "Mutiobjective evolution programming method for feeder reconfiguration," IEEE Trans. on Power Systems, vol. 19, no. 1, 2004, pp. 594-599.
30. S. Y. Ho, L. S. Shu and J. H. Chen, "Intelligent evolutionary algorithms for large parameter optimization problems," IEEE Transactions on Evolutionary Computation, vol. 8, no. 6, 2004, pp. 522-541.
31. N. Taher, R. F. Khorshidi and B. Bahman, "A hybrid evolutionary algorithm for distribution feeder reconfiguration," Science China Technological Sciences, vol 53, no 4, 2010, pp 950-959.
32. V. Miranda, "Evolutionary algorithms with particle swarm movements,” in Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, 2005, pp.6-21.
33. R. S. Rao, S.V. L. Narasimham and M. Ramalingaraju, "Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm, " World Academy of Science, Engineering and Technology, vol.45, 2008, pp. 708-714.
34. B. H. Rao, "Artificial bee colony algorithm for distribution system reconfiguration with distributed generation, " International Journal of Engineering Sciences & Emerging Technologies, vol.3, no.2, 2012, pp. 50-59.
35. L. D. Charles, I. K. Hafeezulla, and S. Ravichandran, "Distribution network reconfiguration for loss reduction using ant colony system algorithm, " Proceedings of IEEE Indicon 2005 Conference, Chennai, India, 2005, pp.619-622.
36. R. F. Chang, and C. N. Lu, "Feeder reconfiguration for load factor improvement, " IEEE Power Engineering Society Winter Meeting, vol. 2, 2002, pp.980-984.
37. F. Afshinmanesh, A. Marandi and A. R. Kian, "A novel binary particle swarm optimization method using artificial immune system, " Proceedings of the International Conference on Computer as a Tool, vol. 1, 2001, pp.217-220.
38. S. Nake, T. Genji, T. Yura, and Y. Fukuyama, "A hybrid particle swarm optimization for distribution state estimation, " IEEE Trans. on Power Systems, vol.18, no. 1, 2003, 2008, pp.60-68.
39. L. X. C. Zhenkun, Y. Kun and Y. Sun, "A hybrid particle swarm optimization approach for distribution network reconfiguration problem," Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, pp 1-7.
40. S. Chandrasekaran, S. Ponnambalam, G. R. K. Suresh and N. Vijayakumar, "A hybrid discrete particle swarm optimization algorithm to solve flow shop scheduling problems, " Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, 2006, pp.1-6.
41. S. Sivanagaraju, J. V. Rao and P. S. Raju, "Discrete particle swarm optimization to network reconfiguration for loss reduction and load balancing, " Electric Power Components and Systems, vol. 36, no. 5, 2008, pp. 513-524.
42. C. A. Coello, G. T. Pulido and M. S. Lechuga, "Handling multiple objectives with particle swarm optimozation, " IEEE Transmission on Evolutionary Computation, vol. 8, no. 3, 2004, pp.256-279.
43. J. E. Fieldsend, "Multi-objective particle swarm optimization methods, " Technical Report #419, Department of Computer Science, University of Exeter, 2004.
44. R. S. Margarita and C. A. Coello, "Multi-objective particle swarm optimizers: a survey of the state-of-the-art, " International Journal of Computational Intelligence Research, vol.2, no. 2, 2006, pp. 287-308.
45. D. Das, "A fuzzy multi-objective approach for network reconfiguration of distribution systems, " IEEE Trans. Power Delivery, vol. 21, no. 1, 2006, pp. 202-209.
46. K. F. Abdollah and K. Amin, "Multi-objective optimal operation of smart reconfigurable distribution grids, " AIMS Energy, vol. 4 no. 2, 2016, pp. 206-221.
47. F. Y. Hsu and M. S. Tsai, "A multi-objective evolution programming method for feeder reconfiguration of power distribution system, " Intelligent Systems Application to Power Systems, 2005, pp.55-60.
48. I. Roytelman, V. Melnik, S. S. H. Lee and R. L. Lugtu, "Multi-objective feeder reconfiguration by distribution management system, " IEEE Trans. on Power System, vol. 11, no. 2, 1996, pp. 661-667.
49. D. Debapriya, "A fuzzy multiobjective approach for network reconfiguration of distribution systems, " IEEE Trans. on Power Delivery, vol. 21, no. 1, 2006, pp. 202-209.
50. J. E. Mendoza, M. E. Lopez, C. A. Coello and E. A. Lopez, "Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network, " IET Generation, Transmission & Distribution, vol. 2, no. 9, 2009, pp. 825-840.
51. A. Ahuja, S. Das and A. Pahwa, "An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration, " IEEE Trans. on Power Systems, vol. 22, no. 3, 2007, pp. 1101-1111.
52. F. Y. Hsu and M. S. Tsai, "A non-dominated sorting evolutionary programming algorithm for multi-objectives power distribution system feeder reconfiguration problems, " European Transactions on Electrical Power, vol. 23, no. 2, 2013, pp.191-213.
53. A. M. Eldurssi and R. M. OConnell, "A Fast Nondominated Sorting Guided Genetic Algorithm for Multi-Objective Power Distribution System Reconfiguration Problem, " IEEE Trans. on Power System, vol. 30, no. 2, 2015, 2015, pp 593 – 601.
54. G. Colombo and C. L. Mumford, "Comparing algorithms, representations and operators for the multi-objective knapsack problem, " The 2005 IEEE Congress on Evolutionary Computation, 2005, pp. 1268-1275.
55. D. A. V. Veldhuizen and G. B. Lamont, "Evolutionary computation and convergence to a Pareto front, " Proceedings of Late Breaking Papers at the Genetic Programming 1998 Conference, 1998, pp. 22-25.
56. T. Murata and H. Ishibuchi, "MOGA: multi-objective genetic algorithms, " Proceedings of IEEE International Conference on Evolutionary Computation, 1995, pp. 289.
57. M. A. Abido, "Multiobjective evolutionary algorithms for electric power 120 dispatch problem, " IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, June 2006, pp. 315-329.
58. M. A. Abido, "Multiobjective optimal power flow using strength Pareto evolutionary algorithm, " Proceedings of the 39th International Universities Power Engineering Conference (UPEC 2004), 2004, pp. 457-461.
59. A. Gomes, C. Henggeler Antunes and A. G. Martins, "Improving the responsiveness of NSGA-II using an adaptive mutation operator: a case study, " International Journal of Advanced Intelligence Paradigms archive, vol. 2, no. 1, 2010, pp. 4-18.
60. I. Marouani, T. Guesmi, H. Hadj Abdallah and A. Ouali, "Optimal Reactive Power Dispatch with SSSC Device Using NSGAII Approach, " International Journal of Computer Science and Network Security (IJCSNS), vol. 10, no. 7, 2010, pp. 58-68.
61. A. Gomes, C. Henggeler Antunes and A. Gomes Martins, "Improving the responsiveness of NSGA-II in dynamic environments using an adaptive mutation operator--a case study, " Lecture Notes in Computer Science 2010. vol. 5177, 2010, pp. 90-97.
62. J. Hazra and A. K. Sinha, "Congestion management using multi objective particle swarm optimization, " IEEE Trans. on Power System, vol. 22, no. 4, 2007, pp. 1726-1734.
63. W. H. Kersting, 「Distribution Feeder Analysis」, Distribution System Modeling and Analysis, Boca Raton London New York Washington, D.C, p269-p274.
64. 吳武昌,應用粒子群集與柏拉圖最佳化於配電系統饋線重構問題之研究,博士論文,國立台北科技大學機電科技研究所,台北,2011。
65. W. C. Wu and M. S. Tsai, "Feeder reconfiguration using binary code particle swarm optimization, " International Journal of Control, Automation, and Systems, vol. 6, 2008, pp. 488-494.
66. D. Shin, J. Kim, T. Kim, J. Choo and C. Singh, "Optimal service restoration and reconfiguration of network using Genetic-Tabu algorithm, " Electric Power Systems Research, vol. 71, no. 2, 2005, pp. 145-152.
67. J. Z. Zhu, "Optimal reconfiguration of electrical distribution network using the refined genetic algorithm, " Electric Power Systems Research, vol. 62, 2002, pp. 37-42.
68. W. C. Wu and M. S. Tsai, "Application of Enhance Integer Coded Particle Swarm Optimization for Distribution system Feeder Reconfiguration, " IEEE Trans. Power Delivery, vol. 26, 2011, pp. 1591-1599.
69. J. Mendoza, R. Lopez, D. Morales, E. Lopez, P. Dessante, and R. Moraga, “Minimal loss reconfiguration using genetic algorithms with restricted population and addressed operators: Real application, " IEEE Trans. Power Systems, vol. 11, 2006, pp. 948-954.
70. 許富淵,應用進化規劃多目標演算法於配電系統饋線重構之研究,博士論文,國立台北科技大學,台北,2012。
71. M. R. Irving, W. P. Luan and J.S. Daniel, "Supply restoration in distribution network using a genetic algorithm, " Electrical Power and Energy System, vol. 24, 2002, pp. 447-457.
72. T. Niknam, " A new hybrid algorithm for multi-objective distribution feeder reconfiguration, "Cybernetics and Systems vol. 40, no. 6, 2009, pp. 508-527.
73. J. Deng, "Control Problems of Grey Systems, " System and Control Letters (1:5), 1982: pp.288-294.
74. 張偉哲、溫坤禮、張廷政,灰關聯模型方法與應用,高立圖書,2000。
75. 陳宥暄,具備族群整備時間的雙目標排程研究-以改良ε-constraint 方法,碩士論文,國立雲林科技大學,雲林,2003。
76. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist Multiobjective genetic algorithm: NSGA-II,” IEEE Trans. on Evolutionary Computation, vol. 6, no. 2, April 2002, pp. 182-197.
77. N. Srinivas and K. Deb, "Multiobjective function optimization using non-dominated sorting genetic algorithms, " Evolutionary Computation., vol. 2, No. 3, 1995, pp. 221-248.
78. C. C. Chu and M. S. Tsai, “Application of Novel Charged System Search with Real Number String for Distribution System Loss Minimization,” IEEE Trans. on Power Systems, vol.28, no. 4, 2013, pp.3600-3609.
79. C. C. Chu and M. S. Tsai, "Feeder Reconfiguration of Distribution System by Using CSS with Real Number Strings, " PowerTech(POWERTECH), 2013,pp1-6.
80. H. T. Yang, Y. T. Tzeng and M. S. Tsai, "Loss-Minimized Distribution System Reconfiguration by Using Improved Multi-agent Based Particle Swarm Optimization, " Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference, 2010, pp.1-6.
81. K. Deb, A. Prate, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II, " IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, 2002.
82. K. Deb, "Multi-Objective Optimization using Evolutionary Algorithms, " New York: John Wiley & Sons, Inc., 2001.
83. A. R. Malekpour, T. Niknam, A. Pahwa and A. K. Fard "Multi-Objective Stochastic Distribution Feeder Reconfiguration in Systems With Wind Power Generators and Fuel Cells Using the Point Estimate Method" IEEE Trans. on Power System, vol. 28, no. 2, 2013, pp1483-1492
84. G. P. Nikolaos, A. Mazza, F. S. Sergio, O. Erdinç, G. Chicco, A. G. Bakirtzis and J. P. S. Catalã, "Multi-Objective Reconfiguration of Radial Distribution Systems Using Reliability Indices,” IEEE Trans. on Power Systems, vol. 31, no. 2, 2016, pp1048-1062.
85. C. C. Chu and M. S. Tsai, "Applications of Non-Dominated Sorting Charged System Search for Multiple Objectives Problem of Power Distribution System under Load Variations, " International Conference on Applied System Invovation, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top