(3.80.6.131) 您好!臺灣時間:2021/05/17 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳震洋
研究生(外文):Chen Yang Wu
論文名稱:雙電解質添加式燃料電池及複合增程充電機構之研究
論文名稱(外文):Study on Refillable Bi-electrolyte Fuel Cell and the Method of Range-extending Charging Hybrid Mechanism
指導教授:高木榮高木榮引用關係
指導教授(外文):Mu Jung Kao
口試委員:高木榮韓麗龍顏維謀卓清松郭金國林正雄
口試委員(外文):Mu Jung Kao
口試日期:2016-07-20
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:陰離子交換膜鋅膠粒鋅溶膠鋅膏沉澱團聚行星齒輪組車輪馬達增程燃料電池
外文關鍵詞:anion exchange membranezinc colloidalzinc solzinc pasterprecipitationaggregationplanetary gear assemblywheel motorrange-extendingfuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
今日質子交換膜燃料電池在全球蓬勃發展之中,然而如何去儲存、運輸與加注氫氣,無論是在固態、液態或氣態,都有很大的障礙存在,而電動車由於安全因素、行駛里程太短與便利性差,而無法成功推展,因此,本研究設計一種創新結構的燃料電池,結合添加式固液雙態電解質燃料電池,作為輔助動力,以及新式機械增程充電驅動機構,利用車輪馬達附行星齒輪組,使電動車可以增加行駛里程、車速、扭力,並可在行駛中充電,希望能將鋅空氣燃料電池能夠走出實驗室,並促進電動車的實用化。
研究中,先研究微球鋅顆粒,合成中空鋅的微球。然後微球用KOH電解液混合成鋅膏,結果產生團聚和沉澱。後來,本研究採用了一種攪拌的技術,使鋅顆粒能永久懸浮,解決了團聚和沉澱問題。以65 wt%的KOH電解液,備製35 wt%的鋅溶膠。測試電池電流密度7.41 mA/cm2,重量比能量840.14 Wh/kg,和電容量3023 mAh。其次研究商購鋅顆粒,用KOH電解液混合成鋅膠粒,使用定電壓法,在開路電壓1.4V,反應面積25cm2,在100%相對濕度與60 ℃下,在定電壓0.3 V,其電流密度70 mA / cm2,功率0.53 W。因各種添加劑之使用,都會附有非期望的生成物,造成全反應複雜化,而且成效不如預期,並且不能解決Zn顆粒最重要最難解決的團聚與沉澱問題,經過多次的研究,使用雙電解質添加式燃料電池,解決了Zn顆粒之腐蝕與鈍化之問題;並用壓磨及陽極流道的特殊設計,解決了商購鋅粉之團聚和沉澱問題;新式陰極流道以避免陰極因大量使用PTFE為防止電解液流出,反造成空氣進氣量不足的問題;而陰極流道的特殊設計,解決了電池堆在流道入口處易微量洩漏之問題。以陰離子交換膜之固態電解質為反應膜避免使用不織布的隔離膜,造成陽極穿透而造成極其危險之電池短路。因採用可添加式進料,所以解決了傳統用手工塗抹鋅膏於陽集集電網上的困擾。反應過程中,不斷地產生氣泡與生成水,已驗證本研究設計之燃料電池是成功的。
Nowadays proton exchange membrane fuel cell has been prosperously developed all over the world. Nevertheless, there exist a lot of obstacles about how to store, transport and fill up with fuel cell, no matter in solid, liquid or gas state. For safety concern, electric car runs short-distance trips only, and such inconvenience makes it unable to be promoted successfully. Therefore, we design an innovatively structured fuel cell, which takes add-on solid/liquid two-state electrolyte fuel cell as auxiliary power, and uses a new mechanical range-extending charging and driving mechanism. The fuel cell makes use of a wheel motor attached with planetary gear assembly, making an electric car have its mileage, speed and torsion increased, and be charged when running. It is hoped that zinc air fuel cell can step out of the laboratory to facilitate practical use of electric cars.
In the study we firstly use micro-spherical Zn grains to synthesize hollowed Zn microspheres. Then the microspheres are mixed with KOH electrolyte to formZn plaster, but resulting in aggregation and precipitation. Later on, we employ a stirring technique to make Zn grains become permanently suspended, thus solving the problems of aggregation and precipitation.We also use 65 wt. % KOHelectrolyte to fabricate 35 wt. % Zn colloids. We test the current density7.41 mA/cm2, specific energy by mass840.14 Wh/kg, and capacitance of cell3023 mAh. The Zn grains purchased for the study this time are mixed with KOH electrolyte to form Zn colloids. Using constant voltage method, and when open-circuit voltage being 1.4V, reaction area being 25cm2, relative humidity being 100% and temperature being 60oC, the constant voltage is 0.3V; its current density is 70 mA / cm2; and the power is 0.53W. Due to use of various additives, unexpected product must adhere to it, and full reaction complexity must be caused, so the effect is not as good as expected. And it cannot solve Zn grains’most headachy and toughest problems, i.e. aggregation and precipitation. But we solve the corrosion and inactivation problems of Zn grains by refillable bi-electrolyte fuel cell. Special designs like press grinding and anode flow channel can solve the commercial Zn powder’s aggregation and precipitation problems. New cathode flow channel, which avoids cathode from using large amount of PTFE in order to prevent outflow of electrolyte, is yet followed by the problem of insufficient air intake. The special design of cathode flow channel can solve the problem of small-amount leakage easily caused at the entrance of flow channel where cells are accumulated. The solid electrolyte of anion exchange membrane is taken as reaction membrane. We do not use the nonwoven-cloth-made separation membrane, which may cause anode penetration and result in an extremely great danger ofshort circuit of cell. Therefore, add-on feeding can solve the inconvenient conventional way, by which Zn plaster was manually applied all over the anode power collection grid, and allows fuel cell to step out of the laboratory. In the process of reaction, air bubbles and produced water are produced continuously, proving that the fuel cell designed by the study is successful.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 1
1.3 文獻回顧 3
1.3.1 陽極 3
1.3.1.1 腐蝕 3
1.3.1.2 鈍化 7
1.3.1.3 極化 8
1.3.1.4 形變 9
1.3.1.5 充放電 9
1.3.1.6 小結 10
1.3.2 陰極 11
1.3.2.1 擴散層 11
1.3.2.2 催化層 12
1.3.2.3 稀土催化劑: 12
1.3.2.4 擴散層、催化層結構 17
1.3.2.5 擴散層、催化層反應 20
1.3.2.6 小結 21
1.3.3 燃料電池 22
1.4 研究方法與特色 24
1.4.1 原始鋅空氣燃料電池 24
1.4.2 粉末、顆粒、微球 24
1.4.3 原始鋅空氣燃料電池 25
1.4.3.1導電板之改進 26
1.4.4 新型可添燃料固液態電解質燃料電池 30
1.4.4.1流道 35
1.4.4.2雙極板 39
1.4.5 四輪獨立直接驅動複合電動車雙增程方法 40
第二章 相關理論分析與探討 41
2.1 電池 41
2.1.1 電池作動 41
2.1.2 電池之氧化還原 42
2.1.3 氧化還原序列 42
2.1.4 電池反應式 43
2.2 腐蝕、鈍化 46
2.3 電能轉換、極化 48
2.3.1 自由能 49
2.3.2 電極極化 50
2.3.2.1 電池電動勢 50
2.3.2.2 電極及電位 51
2.3.2.3 電極極化 53
2.3.2.4 過電位 53
2.3.2.4.1 濃度過電位 55
2.3.2.4.2 活性過電位 56
2.3.2.4.3 電阻過電位 56
2.3.2.5 能士特方程式 56
2.3.2.6 塔弗方程式 64
2.3.2.7 電化轉換 65
2.4 顆粒 66
2.4.1 粒子與攪拌 66
2.4.2 微球 69
2.4.3 膠體 71
2.5 觸媒 73
2.5.1 酸與鹼 73
2.5.2 溶解、解離 75
2.5.3 擴散、滲透 76
2.5.4 內聚力、附著力、表面張力,疏水性、親水性 81
2.5.5 觸媒 84
2.5.6 電雙層 89
2.6 反應膜 97
2.6.1 薄膜 97
2.6.2 離子交換膜 98
2.6.3 陽離子交換膜 103
2.6.4 陰離子交換膜 105
2.6.5 陽、陰離子交換膜反應式 110
2.6.6 陽、陰離子交換膜之結構 112
2.6.6.1 陽離子交換膜 112
2.6.6.2 陰離子交換膜 112
2.6.6.3 全氟磺酸化聚電解質交換膜結構 114
2.6.6.4 全氟羧酸化聚電解質交換膜結構 115
2.6.6.5 離子交換膜組成 116
2.6.6.5.1 全氟磺酸化聚電解質薄膜 116
2.6.6.5.2 全氟羧酸化聚電解質薄膜 116
2.7 增程機構 117
第三章 實驗裝置與實驗方法 118
3.1 鋅顆粒之實驗 118
3.1.1 微球鋅顆粒之實驗 118
3.1.2 商購鋅顆粒之實驗 123
3.2 雙電解質添加式燃料電池 123
3.2.1 陽極流道板 123
3.2.2 陽極導電板、陽極導電片、集電網 126
3.2.3 陰極流道板 128
3.2.4 雙極板 130
3.2.5 陰離子交換膜 133
3.3 實驗設備 135
3.4 四輪獨立直接驅動複合電動車雙增程方法 139
3.5 行星齒輪組討論 143
3.5.1 行星齒輪組之基本公式 143
3.5.2 簡單行星齒輪組之各種配合減速比之關係式 145
3.5.3 簡單行星齒輪組之各種變速狀態關係 148
3.5.4 簡單行星齒輪組之扭矩關係式 149
3.5.5 聯合行星齒輪組 150
3.5.6 複合行星齒輪組 152
第四章 實驗結果與討論 153
4.1 微球鋅顆粒之實驗結果 153
4.2 商購鋅顆粒之實驗結果 156
4.3 專利一:固液雙態電解質燃料電池堆及其電池機構 160
4.3.1 說明 161
4.3.2 專利範圍 171
4.3.3 電池機構圖示 175
4.4 專利二:電動車用增程充電驅動裝置 181
4.4.1 說明 182
4.4.2 專利範圍 191
4.4.3 裝置圖示 196
第五章 結論 200
參考文獻 206
符號彙編 213
發表成果 217
參考文獻
[1] F. Simon, “Marketing green products in the trial,”Columbia Journal of World Business, Fall & Winter, 1992, pp. 269-285.
[2]S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli,Naturevol. 431, 2004,pp. 669.
[3]C. Y. Wu: Taiwan Patent No. M500364, 2015.
[4]C. Y. Wu: Taiwan Patent No. M506736, 2015.
[5] M. J. Kao and C. Y. Wu, “Refillable bi-electrolyte fuel cell and new range-extending charging-driving mechanism for electric vehicles” Journal of Sensors and Materials, vol. 28, No. 5, 2016, pp. 547-559
[6] Y. E. Liu, “The material preparation characterization and cell assembly for zinc-air cell”, Thesis, National Chung Cheng University, 2009
[7] 林岱儀,”無機添加物對鋅電極在KOH溶液中鈍化影響之研究”,碩士論文,國立台灣科技大學,2001。
[8] H. W. Cheng, “Discharge characterization and zinc anode recovery of zinc-air battery”, Thesis, National Tsing HuaUniversity, 2001.
[9] 高振裕,”鋅空氣電池系統之陽極與電解液基本性質研究”,碩士論文,國立清華大學,2000。
[10] 蔡文漢,”鎳鋅電池鋅極的改良”,碩士論文,國立清華大學,1981。
[11] 楊先成,”鎳鋅電池中鋅極化成及添加物對鋅極影響之研究”,碩士論文,國立清華大學,1980。
[12] P. H. Lin. “A Study on the anode material of zinc-air Battery”, Thesis, National Tsing HuaUniversity, 2001.
[13] Y. A. Li, “Study on manufacturing high-performance zinc-air cells”, Thesis,
National Tsing HuaUniversity, 2002.
[14] 許世華,”鋅腐蝕及電鍍鋅極製程之研究”,碩士論文,國立清華大學,2001。
[15] 張簡貴明,”鎳鋅電池中鋅極形狀變化之研究與改進”,碩士論文,國立清華大學,1978。
[16] 沈仲九,”鎳鋅電池鋅電極之研究”,碩士論文,國立清華大學,1979。
[17] P. C. Fang, “Properties and characterization of zinc anodes for zinc batteries”, Thesis,National Tsing HuaUniversity, 2003.
[18] 林邦驥,”鋅-空氣電池鈣鈦礦氧化物空氣極之研究”,碩士論文,中國文化大學,2000。
[19] S. H. Hsu, ”Preparation and characteristic analysis of cathode material for zinc-air battery”, Thesis, National Taiwan University, 2001.
[20] F. C. Yuan, “Air cathode in zinc-air battery – new electrode structure and novel carbon support / catalyst”, Thesis, National Tsing HuaUniversity, 2005
[21] 唐宏怡(H. Y. Tang),”空氣電極與鋅電極研發”,1999年鋅空氣電池技術及其在電動車的應用研討會,台灣台北1999。
[22] S. Park, J. W. Lee, B-N. Popov , Journal of Power Sources, 163, 357–363 (2006)
[23] Y.-G. Chun, C.-S. Kim, D.-H Peck, D.-R. Shin, J. PowerSources, 71, 174-178 (1998).
[24] Y. C. Chou, “PBI crosslinked membranes - preparation and applications to PEMFC”, Thesis, Yuan-Ze University, 2010.
[25] W. M. Chang, “Perfluorosulfonic acid proton exchange membrane electrode assemblies catalyst layer structure designs and fuel cells performances”, Thesis, Yuan-Ze University, 2009
[26] 吳重和,”銀鋅電池中鋅極之研究與改進”,碩士論文,國立清華大學,1977。
[27] W. F. Cheng, “Study of flowing electrolyte of zinc particle fuel cell”, Thesis, National Taipei University of Technology, 2009
[28] K. R. Shi, “Preparation and properties of the new anion-exchange”, Thesis, Beijing University of Chemical Technology, 2008.
[29] D. Linden, “Handbook of Batteries and Fuel Cells”, McGraw-Hill Publishing Company, New York, 1983.
[30] C. Y. Wu, K. D. Huang, and H. Y. Tang, ”Novel method for floating synthesizing heavy metal particles as flowing anode of zinc-air fuel cell” Advances in Materials Science and Engineering, 2014, Article ID 615391,http://dx.doi.org/10.1155/2014/615391.
[31] J. Colborn, S. Smedley, “Ultra-long duration backup for telecommunications applications using zinc/air regenerative fuel cells,” in Telecommunication Energy Conference, 2001, pp. 576-581.
[32] 黃鎮江,燃料電池(修訂版),全華科技圖書股份有限公司,2005。
[33] H. C. Huang, “The performance comparison of PEM fuel cell with spiral channel and serpentine channel”,Thesis, Yuan-Ze University, 2006.
[34] C. Y. Tseng, “The influence of flow channel types on PEM fuel cell”, Thesis, Yuan-Ze University, 2004.
[35] C. H. Huang, “Investigation of metallic bipolar plates for PEM fuel cell”, Thesis, Yuan-Ze University, 2004.
[36] 衣寶廉,"燃料電池-高效、環保的發電方式”,五南圖書出版股份有限公司,2003。
[37] H. Arai and M. Hayashi “Encyclopedia of electrochemical”Power Sources (Nippon Telegraph and Telephone Corporation, Atsugi),2009, pp. 55.
[38]C. Chakkaravarthy, A. K. AbdulWaheed, and H. V. K. Udupa, Power Sources, vol. 6, 1981, pp. 203.
[39] Jhih-Hong JianEffect of micro-porous layer on the water management in Proton Exchange Membrane Fuel Cell Thesis, Yuan-Ze University, 2007.
[40] P. T. Liu, “The Dissolution of solid particles in liquids”, Thesis, National Taiwan University,1993.
[41] D. L. Lin, “Nonisothermal dissolution of solid particles in liquids”, Thesis,National Taiwan University,1992.
[42] T. L. Lu, “A study of the effect of cohesive energies between adsorbed molecules on surfactant exchange process”, Thesis,National Taiwan University of Science and Technology, 1993.
[43]J. H. Chung, “A Study on Stabilization of Colloidal Dispersions”, Thesis,National Taiwan University, 1989.
[44] M. Y. Lin, “Effect of electrolytes on the stability of colloidal dispersion”, Thesis, National Taiwan University, 1994.
[45] Prof. Duncan J. Shaw, “Introduction to colloid and surface chemistry,” 4th edition Butterworth – Heinemann, April 1992.
[46] P. S. Huang, “The effect of stirring on the interparticle forces”, Thesis,National Taiwan University, 1976
[47] C. P. Chiang, “Electrophoresis in a concentrated dispersion of polymeric drops with a charge-regulated surface”, Thesis,National Taiwan University, 2004.
[48] C. C. Hsu, “Critical coagulation concentration of dispersed spherical particles”, Thesis,National Taiwan University, 1995.
[49] M. Lee, “Alkaline anion-exchange membrane in fuel cells”, Thesis,Beijing University of Chemical Technology, 2010.
[50] Laidler & Meiser, “Physical Chemistry”, Cole Publishing Company Complex, 1999.
[51] 熊楚強、王月,”電化學”,新文京開發出版股份有限公司,2004。
[52] 胡啟章,”電化學原理與方法”(二版),五南圖書出版股份有限公司,2012。
[53] T. R. Chang, ”Physical properties of ZrOCl2blended nafion solutions and the preparation of PTFE-Nafion-Zr(HPO4)2composite membranes”, Thesis, Yuan-Ze University, 2007.
[54] 吳浩青、李永舫,電化學動力學,科技圖書股份有限公司,2001。
[55] C. C. Li, “Preparation and reaction analysis quaternary ammonium membrane”, Thesis, Yuan-Ze University, 2006.
[56] Y. K. Wu, “Characterization and preparation of quaternary ammonium membrane”, Thesis,Yuan-Ze University, 2003.
[57] M. Mulder, “Basic principle of membrane technology”, Kluwer Academic Publisher, London, 1991.
[58] 田敬敏,薄膜理論用於模擬三相反應器中液膜質傳之適合性,碩士論文,國立成功大學,1983。
[59] 依日光,”離子交換膜工學”,復漢出版社,1999]
[60] G. Merle, M. Wessling, and K. Nijmeijer: J. Membr. Sci. vol. 337, 2011.
[61] K. S. Cole,“Membranes, ions, and impulses, achapter of classical biophysics”, University of California Press, California, 1968.
[62] Y. Tanaka, S. H. Moon, V. V. Nikonenko, and T. Xu, Int. J. Chem. Eng. Vol.2012, 2012, http://dx.doi.org/10.1155/2012/906952.
[63]J. R. Varcoe, J. P. Kizewski, D. M. Halepoto, S. D. Poynton, R. C. T. Slade, and F. Zhao,“Fuel Cell - Alkaline Fuel Cell”, Encyclopedia of Electrochemical Power Sources, Amsterdam, vol. 329, 2009.
[64]H. Deng, S. Huo, Y. F. Chang, Y. B. Zhou, and K. Jiao: Int. J. Hydrogen Energy vol. 38, 2013, 6509.
[65]S. Huo, H. Deng, Y. F. Chang, and K. Jiao: Int. J. Hydrogen Energy vol. 372012, 18389.
[66] H. C. Ma, “Diffusioosmosis of electrolyte solution in fine capillaries”,Thesis, Nation Taiwan University, 2007.
[67] 連平和,”對立離子在離子交換膜內相互擴散之研究”,碩士論文,國立成功大學,1975。
[68] 黃敏俊,”液膜及膜內擴散控制下離子交換膜中之離子傳送研究”,碩士論文,國立成功大學,1986。
[69] 吳震昌,”離子交換膜中之離子交換”,碩士論文,國立成功大學,1980。
[70] T. P. Hsing, “Study on poly (phthalaxinone ether sulfone) anion-exchangemembranes for vanadium redox flow batteries applications”, Thesis, Dalian Universityof Technology, 2010.
[71] C. Liu, “Cross-linked alkaline exchange membrane for fuel cell”, Thesis, Beijing University of Chemical Technology, 2011.
[72] 姜志新、諶竟清、宋正孝,”離子交換分離工程”,天津大學出版社,1992。
[73]黃鎮江,燃料電池(第三版),滄海書局,2008。
[74]B. L. Yi,“Fuel Cells,the principles and applications”, Wu-Nan Book Inc. Taiwan, 2009.
[75]K. B. Prater, J. Power Sources, vol. 51, 1994, 129.
[76] S. Yuan,“The synthesis and property of new sulfonated polyimides proton exchange membranes and new polybenzimidazoles anion exchange membranes”, Thesis, Shanghai Jiao-Tong University, 2011.
[77] C. K. Cheng, “Performance analysis and Integration with Hydrogen Production System on High Temperature Proton Exchange Membrane Fuel Cell Stacks”, Thesis, Yuan-Ze University, 2014.
[78] C. H. Shi, “A Study of the Transport of Solvent Across Cation Exchange Membrane”, Thesis, National Cheng Kung University, 1977.
[79] 高以桓,”膜分離技術基礎”,科學出版社,北京,1989。
[80] 黃靖雄,”汽車學”,正工出版社,1978。
[81] H. Y. Tang, “Zinc - air fuel cell power systems R & D - research of central-hollow zinc powder and current collector,” National Science Council,the Republic of China, 2007.
[82] K. D. Huang, C. Y. Wu, and J. S. Lee, “Zinc - air fuel cell power systems R & D - air-flow, electrolyte and thermal management,” National Science Council,the Republic of China, 2007.
[83] W. M. Lu, R. Q. Xu, and H. Z. Wu, “Technology of liquid stired”,Chemical Engineering, Gau Lih Book Co. Ltd, 2008.
[84] 黃靖雄、賴瑞海,”現代汽車自動變速箱理論與實際”,正工出版社,1993。
[85] 吳啟明,”自動變速箱”,全國工商出版社圖書,1994。
[86] F. C. Schoemaker, N. Grobbe, M. D. Schakel, S. A. L. de Ridder, E. C. Slob, and D. M. J. Smeulders, “Experimental Validation of the Electrokinetic Theory and Development of Seismoelectric Interferometry by Cross-Correlation”, International Journal of Geophysics, vol. 2012 (2012), Article ID 514242, pp. 23, http://dx.doi.org/10.1155/2012/514242
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top