(3.238.130.97) 您好!臺灣時間:2021/05/10 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉彥虬
研究生(外文):Yen-Joe Ye
論文名稱:超臨界二氧化碳於傾斜管和螺旋管內混合對流熱傳數值研究
論文名稱(外文):Numerical Study on Mixed Convection Heat Transfer for Supercritical Carbon Dioxide in Inclined Tubes and Helical Tubes
指導教授:顏維謀顏維謀引用關係
口試委員:陳震宇陳清祺鄭鴻斌顏維謀
口試日期:2016-05-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:超臨界二氧化碳、混合對流、熱浮力、傾斜管、螺旋管、數值模擬
外文關鍵詞:Supercritical CO2Mixed convectionThermal buoyancyInclined tubeHelical tubeNumerical simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技進步和工業現代化,對能源的需求越來越多,但也面臨能源短缺的問題,為節約能源,我國大力提倡節能減排,提高能源的利用率,而提高能源利用率的一個重要研究方向,即如何提高熱能動力裝置的效率。因對應的研究比較少,特別是當流體處於超臨界壓力條件下的流動與熱傳效能,更成為影響熱能動力裝置發展的瓶頸。由於業界對熱交換系統要求體積小、重量輕、熱交換效率高,因此為提供熱交換系統最佳化設計相應的理論依據,本論文以數值模擬方法探討超臨界CO2在傾斜管或螺旋管內的流動和熱傳特性,分析管內因熱物性變化造成熱浮力對熱流特性的影響,進而探究傾斜管和螺旋管內熱傳強化的方法。本研究在定壁溫(Constant Wall Temperature)和質量流率(Constant Mass Flow Rate)的條件下於傾斜管和螺旋管做數值模擬。模擬結果發現超臨界二氧化碳沿傾斜管流動方向加熱,流體因溫度差所產生劇烈的浮升力發生在:(1)靠近傾斜管入口處,(2)傾斜角度為正值,(3)入口壓力為8MPa,流體溫度接近308K;而流體熱交換最劇烈發生在:(1)浮升力強的位置,(2)二次流與主流夾角為90°時,(3)流體流速較慢時。超臨界二氧化碳在傾斜管只受到浮升力的影響,所以流體成左右對稱。而螺旋管受到浮升力和離心力的影響,流體分佈較混亂屬於非對稱流體,模擬結果發現超臨界二氧化碳於螺旋管內沿流動方向加熱,紊流強度隨著流體溫度和速度增加而增加,故改變入口雷諾數和壁面溫度時,紊流強度也會隨之改變,而改變入口雷諾數變化更顯著。
With the development of technology and the gradual modernization of the industry in Taiwan, more and more energy was demanded. But now we were confronted with the problem of energy shortage. To save energy and improve the utilization of energy, our country strongly advocated the energy conservation and emission reduction, and the most important research direction which was how to improve the efficiency of the device for thermal energy and power. Because of the corresponding research being less, especially the fluid flow and heat transfer for supercritical fluid under the conditions of the thermal power plant had become a bottleneck restricting. At present, people required their heat exchange equipment for small volume, light weight, and effective thermal efficiency. To provide the corresponding theoretical basis on optimization design of the heat exchange equipment, this thesis used numerical simulation method to mixed convection of supercritical carbon dioxide in inclined tubes and helical pipes. The effects of thermal buoyancy induced by physical property variations on the fluid flow and heat transfer were analyzed. Additionally, the heat transfer enhancement methods in inclined and helical tubes were then be explored and proposed. In the present thesis, the conditions of constant wall temperature and mass flow rate in inclined tubes and helical tubes were adopted. The predicted results show when the supercritical carbon dioxide is heated along the flow direction of the inclined tube, the strong buoyancy force generated by the temperature difference between the fluid and the fluid would occur (1) near the entrance of the inclined tube, (2) for positive inclined angle, and (3) for inlet fluid temperature close to 308K at 8 MPa. Besides, the most severe heat exchange occurred at (1) the position of strong buoyancy, (2) secondary flow and the main flow being 90 degree angle, and (3) the fluid flow rate being slow. For mixed convection inclined tubes, the supercritical carbon dioxide is influenced by the thermal buoyancy and the flow is symmetric. While for mixed convection in helical pipes, the fluid flow was affected by the floating lift and centrifugal force. Therefore, the flow distribution is more chaotic than that of the asymmetric fluid. Simulation results disclose that the supercritical carbon dioxide in the helical tube heated along the direction of flow, turbulence intensity increases with increasing temperature and velocity. So, the inlet Reynolds number and wall temperature would influence the turbulence intensity and the effects of inlet Reynolds number are relative important.
目錄

摘 要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1跨臨界流體於傾斜管內對流熱傳分析 2
1.2.2跨臨界流體於螺旋管內對流熱傳分析 6
1.3研究動機與目的 8
第二章 超臨界流體 10
2.1 CFD理論基礎 10
2.1.1 CFD軟體概述及其特點 10
2.1.2 CFD軟體應用領域 11
2.1.3 FLUENT軟體基礎知識 12
2.2超臨界流體的概念 13
2.3超臨界二氧化碳的熱物性質 15
2.4超臨界流體的熱傳性質 17
第三章 跨臨界二氧化碳於傾斜管內混合對流熱傳分析 19
3.1物理模型 19
3.2統御方程式 20
3.3網格生成及邊界條件 21
3.4計算方法及收斂條件 22
3.5計算結果分析 23
3.5.1計算模型驗證 23
3.5.2傾斜管內混合對流熱傳分析 25
第四章 跨臨界二氧化碳於螺旋管內混合對流熱傳分析 42
4.1物理模型和數學模型 42
4.2網格生成及邊界條件 45
4.3計算方法與收斂準則 46
4.4計算結果分析 47
4.4.1計算模型驗證 47
4.4.2螺旋管內流動規律分析 48
第五章 結論與建議 58
5.1結論 58
5.2建議 59
參考文獻 61
符號彙編 65、表目錄

表3.1 三種網格在不同位置X的Nuw比較 ................................................24
表3.2 三種網格在不同位置X的CfRe0比較 .......…......................................24
表3.3 傾斜管之模擬分析的參數條件 ..............…............................…........25
表4.1 不同網格系統對局部Nuw的影響...…....................................…..48
 、圖目錄

圖2.1 三種網格在不同位置X的Nuw比 ..............…...............................14
圖2.2 8MPa時二氧化碳之熱物性質 ...........…..........................................17
圖3.1 物理模型及座標系統 .......................................................................19
圖3.2 直管網格劃分 ..................................................................................22
圖3.3 不同網格系統對局部Nuw的影響 ..................................................24
圖3.4 不同網格系統對局部CfRe0的影響 ...............................................25
圖3.5 不同軸向位置之剖面溫度分佈圖(CaseⅠ, δ=30°)。(a)X = 10;(b)X =
20; (c)X = 50; (d)X = 100; (e)X = 200; (f)X = 400 ............................27
圖3.6 不同軸向位置之剖面速度分佈圖(CaseⅠ, δ=30°)。(a)X = 10; (b)
X = 20; (c)X = 50; (d)X = 100; (e)X = 200; (f)X = 400 .....................27
圖3.7 不同軸向位置之剖面溫度分佈圖(Case Ⅶ, δ=-30°)。(a)X = 10;
(b)X = 20; (c)X = 50; (d)X = 100; (e)X = 200; (f)X = 400 ..............28
圖3.8 不同軸向位置之剖面速度分佈圖(Case Ⅶ, δ=-30°)。(a)X = 10;
(b)X =20; (c)X = 50; (d)X = 100; (e)X = 200; (f)X = 400 ...............29
圖3.9 不同軸向位置之剖面無因次溫度(CaseⅠ, δ=30°) .......................30
圖3.10 不同軸向位置之剖面無因次速度(CaseⅠ, δ=30°) .......................30
圖3.11 不同軸向位置之剖面無因次溫度(CaseⅠ, δ=-30°) ....................31
圖3.12 同軸向位置之剖面無因次速度(CaseⅠ, δ=-30°) ........................31
圖3.13 不同傾斜角度在X= 20時的剖面溫度圖(To = 300K, Tw = 330K)。
(a)δ = 90°; (b)δ = 60°; (c)δ = 30°; (d)δ = 0°; (e)δ = -30°; (f)δ = -60°;
(g)δ = -90° ........................................................................................32
圖3.14 不同傾斜角度在X = 20時的剖面速度圖Re0 = 500。(a)δ = 90°;
(b)δ = 60°; (c)δ = 30°; (d)δ = 0°; (c)δ = -30°; (f)δ = -60°; (g)
δ = -90° .............................................................................................33
圖3.15 不同傾斜角度在X = 20時之無因次溫度曲線圖(To = 300K,
Tw = 30K)。(a)δ≥0; (b) δ≤0 .......................................................34
圖3.16 不同傾斜角度在X = 20時之無因次速度曲線圖(Re0 = 500)。
(a)δ≥0; (b) δ≤0 ............................................................................35
圖3.17 傾斜角度對局部摩擦係數之影響(To = 300K, Tw = 330K, Re0 = 500)。
(a)φ=90°; (b)φ=-90° ................................................................36
圖3.18 傾斜角度對局部努塞爾數之影響(To = 300K, Tw = 330K, Re0 = 500)。
(a)φ=90°; (b)φ=-90° ........................................................................38
圖3.19 擬臨界區域對局部CfRe0之影響 ……………………….…...….....39
圖3.20 擬臨界區域對局部Nuw之影響 ………………...…..……….….…….39
圖3.21 壓力為7~9MPa時,二氧化碳的熱物理性質與溫度關係 ................40
圖3.22入口壓力對CfRe0之影響(To = 300K, Tw = 330K, Re0 = 500) 。 ……41
圖3.23入口壓力對Nuw之影響(To = 300K, Tw = 330K, Re0 = 500)。 ……….41
圖4.1 物理模型及座標系統 …………………………………………….…….42
圖4.2 螺旋管網格劃分 …………………………………………………..……46
圖4.3 不同網格系統對局部Nuw的影響 ……..…………………………..…48
圖4.4 不同軸向角ω/360° = 1、2、3截面溫度分佈圖(T0 = 293.15K,
Re0 = 50000)。(a)Tw = 303.15K; (b)Tw = 323.15K; (c)Tw = 343.15K
……………………………………………………………………...……50
圖4.5 不同軸向角ω/360° = 4、5、6截面溫度分佈圖(T0 = 293.15K,
Re0 = 50000)。(a)Tw = 303.15K; (b)Tw = 323.15K; (c)Tw = 343.15K
…………………………………………………………………………...50
圖4.6 不同軸向角ω/360° = 1、2、3截面速度分佈圖(T0 = 293.15K,
Re0 = 50000)。(a)Tw = 303.15K; (b)Tw = 323.15K; (c)Tw = 343.15K
………………………………………...…………………………………51
圖4.7 不同軸向角ω/360° = 4、5、6截面速度分佈圖(T0 = 293.15K,
Re0 = 50000)。(a)Tw = 303.15K; (b)Tw = 323.15K; (c)Tw = 343.15K
………………………………………...…………………………………51
圖4.8 不同軸向角ω/360° = 1、2、3截面紊流動能分佈圖(T0 = 293.15K,
Re0 = 50000)。(a)Tw = 303.15K; (b)Tw = 323.15K; (c)Tw = 343.15K
………………………………………...…………………………………52
圖4.9 同軸向角ω/360° = 4、5、6截面紊流動能分佈圖(T0 = 293.15K,
Re0 = 50000)。(a)Tw = 303.15K; (b)Tw = 323.15K; (c)Tw = 343.15K
………………………………………...…………………………………53
圖4.10不同軸向角ω/360° = 1、2、3截面溫度分佈圖(T0 = 293.15K,
Tw = 323.15K)。(a) Re0 = 10000; (b) Re0 = 50000; (c) Re0 = 100000
………………………………………...…………………………………54
圖4.11不同軸向角ω/360° = 4、5、6截面溫度分佈圖(T0 = 293.15K,
Tw = 323.15K)。(a) Re0 = 10000; (b) Re0 = 50000; (c) Re0 = 100000
………………………………………...…………………………………54
圖4.12不同軸向角ω/360° = 1、2、3截面速度分佈圖(T0 = 293.15K,
Tw = 323.15K)。(a) Re0 = 10000; (b) Re0 = 50000; (c) Re0 = 100000
………………………………………...…………………………………55
圖4.13不同軸向角ω/360° = 4、5、6截面速度分佈圖(T0 = 293.15K,
Tw = 323.15K)。(a) Re0 = 10000; (b) Re0 = 50000; (c) Re0 = 100000
………………………………………...…………………………………55
圖4.14不同軸向角ω/360° = 1、2、3截面紊流強度分佈圖(T0 = 293.15K,
Tw = 323.15K)。(a) Re0 = 10000; (b) Re0 = 50000; (c) Re0 = 100000
…………………….…………………...………...………………………56
圖4.15不同軸向角ω/360° = 4、5、6截面紊流強度分佈圖(T0 = 293.15K,
Tw = 323.15K)。(a) Re0 = 10000; (b) Re0 = 50000; (c) Re0 = 100000
…………………….…………………...………...………………………57
參考文獻

[1] C. Y. Yang, J. L. Xu, X. D. Wang and W. Zhang, 2013, "Mixed convective flow and heat transfer of supercritical CO2 in circular tubes at various inclination angles," International Journal of Heat and Mass Transfer, vol. 64, pp. 212-223.
[2] S. S. Pitla, E. A. Groll and S. Ramadhyani, 2011, "Convective heat transfer from in-tube flow of turbulent supercritical carbon dioxide: part 1-numerical analysis," HVAC and R Research, vol. 7, no. 4, pp. 345-366.
[3] T. WalIsch, W. Mtller, W. Dorfler and C. Trepp, 1996, "The heat transfer to supercritical carbon dioxide in tubes with mixed convection," High Pressure Chemical Engineering, vol. 12, pp. 199-204.
[4] S. M. Liao and T. S. Zhao, 2002, "Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini-micro channels," Journal of Heat Transfer, vol. 124, no. 3, pp. 413-420.
[5] R. B. Duffey and I. L. Pioro, 2005, "Experimental heat transfer of supercritical carbon dioxide inside channels (survey)," Nuclear Engineering and Design, vol. 235, pp. 913-924.
[6] G. A. Asebiyi and W. B. Hall, 1976, "Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe," International Journal of Heat and Mass Transfer, vol. 19, pp. 715-720.
[7] H. Y. Kim, H. Kim, D. J. Kang, J. H. Song and Y. Y. Bae, 2007, "Experimental investigations on a heat transfer to CO2 flowing upward in a narrow annulus at supercritical pressures," Nuclear Engineering and Technology, vol. 40, no. 2, pp. 155-162.
[8] P. X. Jiang, Y. Zhang, Y. J. Xu, R. F. Shi, 2008, "Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers," International Journal of Thermal Sciences, vol. 47, pp. 998-1011.
[9] V. A. Kurganov and A. G. Kaptilnyi, 1991, "Flow structure and turbulent transport of a supercritical pressure fluid in a vertical heated tube under the conditions of mixed convection. Experimental data," International Journal of Heat and Mass Transfer, vol. 36, no. 13, pp. 3383-3392.
[10] V. A. Kurganov, A. G. Kaptil’ny, 1992, "Velocity and enthalpy fields and eddy diffusivities in a heated supercritical fluid flow," Experimental Thermal and Fluid Science, vol. 5, pp. 465-478.
[11] H. Y. Kim, H. Kim, J. H. Song, B. H. Cho and Y. Y. Bae, 2007, "Heat transfer test in a vertical tube using CO2 at supercritical pressures," Journal of Nuclear Science and Technology, vol. 44, no. 3, pp. 285-293.
[12] D. E. Kim and M. H. Kim , 2010, "Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube," Nuclear Engineering and Design, vol. 240, no. 10, pp. 3336-3349.
[13] P. J. Bourke, D. J. Pulling, L. E. Gill and W. H. Denton, 1970, "Forced convective heat transfer to turbulent CO2 in the supercritical region," Chemical Engineering Division, A.E.R.E., Harwell, Berkshire, England, vol. 13, pp. 1339-1348.
[14] J. Pettersen, R. Rieberer and S. T. Munkejord, "Heat Transfer and pressure drop characteristics of evaporating carbon dioxide in microchannel tubes, 2000, " Final proceeding of the 4th IIR-Gustav Lorentzen conference, no. 1, pp. 324-332.
[15] N. Ghorbani, H. Taherian, M. Gorji and H. Mirgolbabaei, 2010, "Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers," Experimental Thermal and Fluid Science, vol. 34, pp. 900-905.
[16] T. J. Huttl and R. Friedrich, 2000, "Infuence of curvature and torsion on turbulent flow in helically coiled pipes," International Journal of Heat and Fluid Flow, vol. 21, pp. 345-353.
[17] 徐峰、郭烈錦,2005,「超臨界壓力下水在螺旋管內的混合對流換熱」,西安交通大學學報,第三十九卷,第九期,第978-981頁。
[18] L. J. Li, C. X. Lin and M. A. Ebadian, 1999, "Turbulent heat transfer to near-critical water in a heated curved pipe under the conditions of mixed convection," International Journal of Heat and Mass Transfer, vol. 42, no. 16, pp. 3147-3158.
[19] T. H. Ko and K. Ting, 2006, "Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube," Energy, vol. 31, pp. 2142-2152.
[20] S. Wang, 2014 "Experimental investigations on turbulent heat transfer of carbon dioxide in a helically coiled tube," International Conference on Materials for Renewable Energy and Environment (ICMREE), Chengdu.
[21] W. Zhang, S. Wang, C. Li and J. Xu, 2015, "Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube," Applied Thermal Engineering, vol. 88, pp. 61-70.
[22] C. X. Lin and M. A. Ebadian, 1999, "The effexts of inlet turbulence on the development of fluid flow and heat transfer in a helically coiled pipe," International Journal of Heat and Mass Transfer, vol. 42, pp. 739-751.
[23] W. R. Dean, "Fluid motion in a curved channel, 1928, " The Royal Society, vol. 121, no. 787, pp. 402-420.
[24] Fluent Inc. Fluent user’s guide, 2006
[25] V. Yakhot, S. A. Orszag, 1986, "Renormalization group analysis of turbulence: I. Basic theory[J]," Journal of Scientific Computing, vol. 1, no. 1, pp. 1-51.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔