(3.235.139.152) 您好!臺灣時間:2021/05/08 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宗翰
研究生(外文):Tsung-Han Tsai
論文名稱:固態氧化物燃料電池熱電聯產系統設置與操作模式建立之研究
論文名稱(外文):Study of Solid Oxide Fuel Cell Combined Heat and Power System and Operation Model
指導教授:鄭鴻斌鄭鴻斌引用關係
指導教授(外文):Hong-Ping Cheng
口試委員:陳震宇陳清祺顏維謀王俊修
口試日期:2016-05-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
中文關鍵詞:操作模式效率熱電聯產系統固態氧化物燃料電池
外文關鍵詞:Operation ModelEfficiencyCombined Heat and Power SystemSolid Oxide Fuel Cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之SOFC電池堆為平板式SOFC,採用陽極支撐型電池片,比起傳統電解質支撐型電池片,可操作於較低溫環境,由於電池堆及其密封材料極為脆弱,因此,在操作系統運轉時需更加注意,應避免快速啟停,否則將造成系統不穩定,甚至減短電池片壽命。故本研究採用逐步提升拉載電流方式來提升輸出功率。在進行本研究前,對燃燒器、重組器進行測試,以掌握其於暫態與穩態時之燃燒特性及重組性能。
在燃料電池系統做完初步測試之後,為了進一步測試系統之穩定性及發電能力,本研究進行了以下測試:首先是燃料電池系統在長時間操作下之穩定性、輸出功率及發電效率,發現於42 A負載操作時,平均發電能力已可突破1 kW,可輸出至1028 W,平均發電效率達50.14 %;其次是將燃料電池之發電能力以性能曲線方式呈現;最後是測試了電池堆各電池組之溫度與壓力分布,發現電池堆各電池組之溫度與電壓分布平均且在合理範圍內,由此可判斷該電池堆之組裝密封狀況良好及電池片品質穩定。
在燃料電池系統做完穩定運轉可靠性測試之後,由於燃料電池系統載運轉中會產出許多廢熱,廢熱以廢氣型式排出,為了進一步回收此廢熱增加系統效率,本研究於系統尾氣出口處加上熱回收設備,即所謂熱電聯產系統(combine heat and power , CHP)來回收廢熱,經由測試後發現CHP系統之熱回收效率可達30 %以上,代表加裝CHP系統改善之後,可將整體熱電效率提升至80 %以上。
當系統卸載時,為了要保持系統隨時可以負載之能力,因此需將系統保持熱待機狀態,為了維持系統之熱待機狀態,需持續通入一定量之燃氣,以提供足夠之熱來維持重組器、電池堆溫度。經推算若要維持本研究之SOFC系統熱待機所需消耗之能量為0.09 kWh。
The flatbed solid oxide fuel cell (SOFC) stack in this study adopts the type anode supported cells, being able to operate in a lower-temperature environment compared with the traditional supporting electrolyte type battery slice. Because the SOFC stack and sealing material are fragile, it should pay more attention to the operation system’s running and avoid quick on and off, or it may cause the system unstableness and even the short life of battery slice. Therefore, this study adopts the way of promoting tensile load current to enhance output power. Before this study, we keep the test of combustion characteristics and recombinant performance in the transient and steady of burner and reformer under control.
After finishing the preliminary test of fuel cell system, we have carried the following tests out in this study in order to test the system stability and power generation capacity further. We discussed the stability, output power and power generation efficiency of the fuel cell system under its long-time operation in the beginning, and discovered when we processed the 42 A load operation, we broke through the average power generation capacity by 1 kw, up to 1,028 w of output and 50.14% of averaging power generation efficiency. Thereafter we present the battery’s power generation capacity by performance curve. Finally, we have tested each battery pack’s temperature and voltage distribution of stack even in the reasonable range. Through it we may judge that the status of battery pack’s seal assembling is good and the quality of battery chip is also stable.
After finishing the reliability test of stable operation of the fuel cell system, waste heat is discharged by type exhaust gas owing to lots of waste gas generated from the system’s load operation. This study added the heat recovery equipment at the system’s exhaust outlet, the so-called combined heat and power generation system (CHP), for recycling the waste heat in order to further recycle waste heat to enhance system efficiency. After test we found that the CHP’s heat recovery efficiency reaches over 30%, representing the integrated heat efficiency to be able to increase above 80% after adding the CHP system.
When the system is unloading, it keeps hot standby for maintaining load capacity available at any time. It is necessary to last a given amount of gas for keeping the system’s hot standby and providing enough heat to keep the temperature of reformer and stack. It is estimated that if we want to keep SOFC system’s hot standby as this study mentioned, 0.09 kwh of energy consumption is needed.
目 錄

摘要……………………………………………………………………………………………………i
ABSTRACT…………………………………………………………………………………………iii
致謝………………………………………………………………………………………………………v
目錄………………………………………………………………………………………………………vi
表目錄…………………………………………………………………………………………………viii
圖目錄…………………………………………………………………………………………………ix
第一章 緒論……………………………………………………………………………………1
1.1 前言…………………………………………………………………………………………1
1.2 文獻回顧…………………………………………………………………………………4
1.3 需求與動機……………………………………………………………………………6
第二章 原理介紹…………………………………………………………………………7
2.1 燃料電池介紹………………………………………………………………………7
2.1.1 燃料電池發展歷史與背景…………………………………………7
2.1.2 燃料電池操作原理………………………………………………………9
2.1.3 燃料電池分類…………………………………………………………………10
2.1.4 燃料電池之理想電池電壓…………………………………………11
2.1.5 燃料電池發展概況………………………………………………………14
2.2 固態氧化物燃料電池………………………………………………………16
2.2.1 固態氧化物燃料電池發展歷史與背景………………16
2.2.2 固態氧化物燃料電池原理………………………………………17
2.2.3 固態氧化物燃料電池系統各元件介紹………………21
2.2.4 固態氧化物燃料電池的發展…………………………………28
第三章 研究方法………………………………………………………………………30
3.1 實驗設備………………………………………………………………………………30
3.2實驗操作流程………………………………………………………………………37
第四章 結果與討論…………………………………………………………………40
4.1 SOFC系統起機測試結……………………………………………………40
4.2 SOFC系統穩定操作結果………………………………………………48
4.3 SOFC CHP系統應用測試結果……………………………………55
第五章 總結………………………………………………………………………………63
第六章 參考文獻……………………………………………………………………65


1. W. Naoki, T. Ooe, Y. Akagi, T. Ishihara, “Estimation of heat generation rate in solid oxide fuel cell module from single cell performance and module performance based on impedance analysis,” Int. j. Hydrogen energy, 37 [10] 8562-8571 (2012).
2. V. Liso, A. C. Olesen, M. P. Nielsen and S. K. Kær, “Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system,” Energy, 36 [7] 4216-4226 (2011).
3. D. Georgis, S. S. Jogwar, A. S. Almansoori and P. Daoutidis,“Design and control of energy integrated SOFC systems for in situ hydrogen production and power generation,”Comput. Chem. Eng., 35 [9] 1691-1704 (2011).
4. S. K. Hong, S. K. Dong, J. B. Yang, “Experiment and simulated investigation of 1kW solid oxide fuel cell balance of power system,” J. Power Sources, 214 [15] 28-32 (2012).
5. T. D. Chung, Y. P. Chyou, W. T. Hong, Y. N. Cheng and K. F. Lin, “Influence of Energy Recuperation on the Efficiency of a Solid Oxide Fuel Cell Power System,” Energy Fuels,21 [1] 314-321 (2007).
6. T. D. Chung, W. T. Hong, Y. P. Chyou, D. D. Yu, K. F. Lin and C.-H. Lee, “Efficiency analyses of solid oxide fuel cell power plant systems,” Appl. Therm. Eng., 28 [8-9] 933-941 (2008).
7. T.H. Lim, R.H. Song , D.R. Shin, J.I. Yang, H. Jung, I.C. Vinke, S.S. Yang. “Operating characteristics of a 5kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system,” Int. J. Hydrogen Energy, 33 [3] 1076-1083 (2008).
8. T. H. Yen, W. T. Hong, W. P. Huang , Y. C. Tsai , H. Y. Wang, C. N. Huang, C. H. Lee, “Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner,” J. Power Sources, 195 [5] 1454-1462 (2010).
9. M. Halinen, J. Noponen Saariene, M. Vinke, I.C. J. Kiviaho, “Experimental analysis on performance and durability of SOFC demonstration,” Fuel cells, 10 [3] 440-452 (2010).
10. A. Lanzini, M. Santarelli, G. Orsello, “Residential solid oxide fuel cell generator fuelled by ethaol: cell, stack and system modelling with a preliminary experiment,” Fuel cells,10 [4] 654-675 (2010).
11. T.G. Ghang, S. M. Lee, K. Y. Ahn, Y. Kim, “An experimental study on the reaction characteristics of a couple reactor with a catalyst combustor and a steam reformer for SOFC systems,” Int. J. Hydrogen Energy, 37 [4] 3234-3241 (2012).
12. P. Thomas, N. Laura, L. Dick, M. Stefano, “System design and process layout for a SOFC micro-CHP unit with reduced operating temperatures,” Int. J. Hydrogen Energy,38 [1] 431-439 (2013).
13. J. Pirkandi, M. Ghassemi, M. H. Hamedi, R. Mohammadi, “Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC-CHP),” Journal of Cleaner Product., 29-30 151-162 (2012).
14. P. Nehter, “A high fuel utilizing solid oxide fuel cell cycle with regard to the formation of nickel oxide and power density,” J. Power Sources, 164 [1] 252-259 (2007).
15.王俊修,“固態氧化物燃料電池之燃料重組與二氧化碳及氮氧化物還原之研究 ”,國立清華大學化學工程所博士論文,民國一百年。
16.王啟川,熱交換器設計,台北:五南圖書出版公司,30-67頁,2005。
17.科學發展,2003年7月367期,6~11頁
18.黃鎮江,燃料電池,蒼海書局,3-264頁,2008。
19. W. T. Hong, C. N. Huang, S. K. LO, H. I. TAN, C. H. LIN, Y. C. SHIH, “Apparatus of Power Generation Using Dense Solid Oxide Fuel Cells,” 2015-39854 (2015).
20. Elcogen官網 http://www.elcogen.com/en/。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔