(3.236.100.86) 您好!臺灣時間:2021/05/07 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王添毅
研究生(外文):WANG TIEN-YI
論文名稱:EFEM(Equipment Front-End Module)流場入侵晶圓傳送盒情況下晶圓數目及擺放方式對晶圓表面相對濕度分佈之影響
論文名稱(外文):The Influence of wafer position and amount to the distribution of relative humidity (RH) on wafer surfaces when the downflow of EFEM (Equipment Front-End Module) invades to the FOUP under door open condition.
指導教授:胡石政
指導教授(外文):Shin-Cheng Hu
口試委員:林廸傅本然古震維胡石政
口試日期:2016-06-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:相對濕度晶圓片數導流管晶圓傳送盒
外文關鍵詞:Relative humidityNumber of wafersAir curtaindiffuserFront Opening Unified Pod
相關次數:
  • 被引用被引用:4
  • 點閱點閱:398
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去的十五年裏前開門晶圓盒系統(FOUP(Front Opening Unified Pod)/LPU(Load-port Unit))已被多数十二吋半導體廠所採用且已被証明其可提供一無(或非常少)粒子污染之環境,唯其未能提供無(或非常少)水,氧或氣態分子之製造環境。對靜置的晶圓傳送盒(例如晶圓傳送盒在充氣站或晶圓傳送盒倉儲塔)充以氮氣以使盒內的氧氣控制在可接受的水準是目前業界常用的方法。對氧氣較不敏感的製程可用潔淨乾空氣(Clean Dry Air(CDA))取代氮氣,成本較低亦不具危險性。越來越多的研究及製程顯示,晶圓在晶圓傳送盒門開啟後,於微環境內待轉入製程的腔體內過程中亦非常容易受到汙染。
晶圓經過蝕刻製程,汙染物以氣態分子汙染物(AMC,Airborne Molecular Contaminant)形式揮發後附著在晶圓傳送盒壁面,進入下一道製程,附著於晶圓傳送盒壁面的AMC可能再次揮發,並附著於下一批晶圓,如此反覆幾道程序,會嚴重影響晶圓的製程良率,所以晶圓傳送盒開門時的污染控制非常重要,晶圓傳送盒門開啟後充以氮氣或潔淨乾空氣者仍少,技術上有相當的挑戰性,唯卻是14奈米製程以下迫切需要的,為了克服上述的挑戰,提出新的充填系統,門開啟時,門前由產生均勻氣廉裝置產生的下吹氣簾,隔絕EFEM(Equipment Front End Module)氣流侵入FOUP確保晶圓表面上相對濕度處於可接受之範圍。
氣廉已被廣泛運用在開放式冷藏櫃與建築物入口上方之空氣門,主要功能接用來隔絕外部溫度、氣流、微粒等,氣廉裝設於FOUP上方避免氣流直接吹至晶圓表面,不會造成晶圓表面微粒再揚起與振動,亦沒有充填入口流量太大使FOUP振動與傾斜的問題。
FOUP在開門時,如何有效阻止EFEN水氣進入,需要立即被解決及控制的問題,本實驗研究及比較三種解決方法之有效性及其對各種晶圓數目及擺放方式對晶圓表面相對濕度分佈之影響:
1. 導流管迫淨
2. 流場塑行器產生一均勻氣簾
3. 流場塑型器結合導流管迫淨
利用現有導流管迫淨方式FOUP內部相對濕度皆高於40%,也就是EFEM氣流皆會侵入內部並汙染晶圓表面,使用流場塑型器產生一均勻氣簾,FOUP內部晶圓表面相對濕度皆可控制25%以下,結合兩種方式為最佳解決方案,晶圓前方位置相對濕度20%以外,其餘位置晶圓表面相對濕度控制在10%以下。
Over the past fifteen years ago opened pod system (FOUP (Front Opening Unified Pod) / LPU (Load-port Unit)) has been adopted by the majority of twelve inches and a semiconductor plant which has been shown to provide a no ( or very little) particle contamination of the environment, the only of its failure to provide no (or very little) manufacturing environment, water, or gaseous oxygen molecules. Standing on the wafer transfer box (such as wafer transfer cartridge filling station or wafer transfer cassette storage tower) is filled with nitrogen so that oxygen box at an acceptable level is the industry commonly used method. Relatively insensitive to oxygen process available clean dry air (Clean Dry Air (CDA)) substituted nitrogen, low cost nor dangerous. More and more research and process display, 25 wafers after wafer transfer box door is opened, the process chamber in the microenvironment to be transferred in the process is also very susceptible to contamination.
After the wafer etching process in a gaseous pollutants molecular contaminants (AMC, Airborne Molecular Contaminant) attached to the rear in the form of volatile wafer transfer cassette wall, into the next process, attached to the wall surface of the wafer feeder AMC may be volatile again, and attached to the next batch of wafers, so repeated a few programs, it will seriously affect the wafer process yield, so the pollution control system Cheng Shijing round feeder is very important to open the door, open the door after the wafer transfer box filled with nitrogen or dry clean air were still small, technically quite challenging, but it is the only 14-nanometer or less urgent need, in order to overcome the above challenges, propose new filling system, when the door is open, even in front of the gas produced inexpensive devices next generation blowing curtain, isolated EFEM (Equipment Front End Module) to ensure that the airflow invade FOUP wafer surface relative humidity is in an acceptable range.
Air Curatin has been widely used in air cooler door open and above the entrance of the building, the main function is used to cut off access external temperature, air flow, particulates, gas cheaper mounted above the FOUP wafer surface to avoid direct blow, not cause problems raised particles and vibration.
摘 要 i
ABSTRACT iii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 潔淨室定義 3
1.2.1潔淨室規範 3
1.2.2潔淨室分類 7
1.2.3潔淨室適用範圍 10
1.3 文獻回顧 12
1.4 研究目的 14
第二章 實驗設備與儀器 15
2.1 實驗設備 15
2.1.1潔淨空調實驗室(Clean Room) 15
2.1.2微環境(Mini-environment) 16
2.1.3潔淨迫淨用乾空氣(Dry Clean Air) 17
2.1.4晶圓卸載機組(Load Port) 17
2.1.5晶圓傳送盒FOUP(Front Opening Unified Pod) 18
2.1.6實驗用晶圓(Wafer) 19
2.1.7流場塑型器(Flow Field Former) 19
2.1.8壓阻測試夾具 21
2.1.9實驗系統圖 22
2.2 實驗儀器 23
2.2.1 Dickson溫溼度紀紀錄器(TK150) 23
2.2.2壓差計 24
2.2.3風速計 24
2.2.4質量流量控制器(Mass Flow Controller) 25
2.2.5電子式流量計 25
第三章 實驗方法 26
3.1實驗方法 26
3.2 數值模擬分析 32
3.2.1基本假設 32
3.2.2LES模擬統御方程式 33
3.2.3模擬外形及邊界設定 35
3.2.4求解方法與鬆弛因子 37
3.2.5網格設定 39
第四章 實驗結果 41
4.1 FOUP開啟時導流管迫淨隔絕效果 41
4.1.1晶圓傳送盒滿載(Case1.1) 41
4.1.2晶圓放置Slot1~Slot6(Case1.2) 42
4.1.3晶圓放置Slot1,2,13,14,24,25(Case1.3) 43
4.1.4晶圓放置Slot7,9,11,13,15(Case1.4) 44
4.1.5晶圓放置Slot 7,10,13,16,19(Case1.5) 45
4.2 FOUP開啟時流場塑型器迫淨隔絕效果 46
4.2.1 晶圓傳送盒滿載(Case2.1) 46
4.2.2 晶圓放置Slot1~Slot6(Case2.2) 48
4.2.3 晶圓放置Slot1,2,13,14,24,25(Case2.3) 51
4.2.4 晶圓放置Slot 3.5.7.9.11(Case2.4) 54
4.2.5 晶圓放置Slot 3.6.9.12.15(Case2.5) 57
4.3 FOUP開啟時流場塑型器配合導流管迫淨隔絕效果 60
4.3.1 晶圓放置Slot 3,6,9,12,15(Case3.1) 60
4.4 流場侵入模式數值模擬結果 63
4.4.1 晶圓滿載時EFEM氣流侵入情形 63
4.4.2 導流管充填下晶圓滿載時EFEM氣流侵入情形 65
第五章 結論與建議 66
5.1 結論 66
5.2 建議及未來方向 67
參考文獻 68
符號彙編 71
[1]Hiroshi Kitajima Yoshimi Shiramizu “Requirements for Contamination Control in the Gigabit Era’’ IEEE Transactions on Semiconductor Manufacturing, VOL. 10, NO. 2, MAY 1997
[2]Nguyen, T.Q., Fontaine, H., Borde, Y. andJacob,V., “Identification and quantification of FOUP molecular contaminants inducing defects in integrated circuits manufacturing.” Microelectronic Engineering Volume 105, May 2013, Pages 124–129
[3]International Technology Roadmap for Semiconductors (ITRS), 2011 Edition.
[4]Tokunaga, K. ; Koiwa, A. ; Suzuki, N. ; Takeda, K. ; Makabe, K. ; Nishihara, S. ; Koike, A., “FOUP mini-environment contamination control optimizing nitrogen purging” IEEE International Symposiumon Semiconductor Manufacturing 30 Sept.-2 Oct. 2003 Pages 463–466
[5]Gil Joo Song, Sung Min Hwang, Soo Jong Koo, Hyoung Ryeun Kim, Hee Chang Jang,Jeong Hoon Hong, Hyun Yul Park, Euiji Choi, Jin Young Kim, Tae Yong Noh,Eungsun Lee, Seoung-Kyo Yoo Eungsun Lee, Seoung-Kyo Yoo “Evaluation of Hindrance to the Growth of SiN Passivation Layer by Contamination of Fluoride Ions in Front Opening Unified Pod (FOUP)’’ Volume 15, No. 5, October 2015, Pages 2175-2183
[6]Kamoshima, T., Fujii, Y., Noguchi, T., Saeki, T., Takata, Y., Ochi, H., and Koiwa, A., “Controlling Ambient Gas in Slot-to-Slot Space Inside to Suppress Cu-Loss After Dual Damascene Patterning”IEEE Transactions on Semiconductor Manufacturing 2008;21:573-7.
[7]Arnaud Favre, Julien Bounouar, Sylvain Rioufrays, Emmanuelle Veran Sandrine André, Kristell Courouble, Pascal Decamps, Marilyn Rojat, Jean-François Houé, Frédérique Trenteseaux “Yield enhancement through new solutions for queue time containment“ IEEE Semiconductor Manufacturing (ISSM), 2008 International Symposium on 27-29 Oct. 2008 Page(s) 255 - 257
[8]Xu Zhang ,Chen-guang Gai , and Jun Huang Shanghai Huali “Optimization of PET (Post Etch Treatment) steps to enlarge queue time anddecrease defect counts in Ultra low-k material AIO (All in One) etch processes“ IEEE Semiconductor Technology International Conference (CSTIC), 2015 China 15-16 March 2015 Page(s) 1 - 4
[9]Chung Wen Hung, “Dynamic Analysis Airflow and Concentration in FOUP/LPU Minienviroment System for 300mm Wafer Manufacturing
[10]Hu S, Wu T. “ Experimental study of airflow and particle characteristics of a 300-mm POUP/LPU minienvironment system ”. IEEE Trans Semicond Manuf 2003;16:660-7.
[11]Jürgen Frickinger, Jürgen Bügler, Gerhard Zielonka, Lothar Pfitzner, Heiner Ryssel, Susanne Hollemann, and Heinz Schneider “Reducing Airborne Molecular Contamination by Efficient Purging of FOUPs for 300-mm Wafers—The Influence of Materials Properties ” IEEE Transactions on Semiconductor Manufacturing, Vol. 13, No. 4, November 2000
[12]Howard Tsao, Tuung Luoh, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen, Chih-Yuan Lu “ FOUP Environment Control and Condense Reduction-Yiting Kuo” IEEE e-Manufacturing & Design Collaboration Symposium 2012 4-4 Sept. 2012 Page(s) 1 - 2
[13]Yan-Ming Ruan, “sing Laser Flow Visualization Technique to Investigate the Flow Patterns of a FOUP/LPU during FOUP Door Opening Processes”
[14][7]Wang HP, Kim SC, Liu B. Advanced FOUP purge using diffusers for FOUP door-off application. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014) 2014:120-4
[15]Yi Han Tang, “integrating purge system and clean dry air (CDA) curtain in the nano-contamination control for the sub-20 nm semiconductor manufacturing processes: FOUP door off critical scenario“
[16]Yung-Tang Yang, “integrating purge system and clean dry air (CDA) curtain in the nano-contamination control for the sub-20 nm semiconductor manufacturing processes: FOUP door off critical scenario“
[17]H. Fontainea, H. Feldisb, A. Danela, S. Cetrea and C. Ailhasa, “Impact of the Volatile Acid Contaminants on Copper Interconnects Electrical Performances” ECS Transactions, Vol. 25, issue 5 pages 79-86
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔