(3.227.249.155) 您好!臺灣時間:2021/05/07 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖崧敦
研究生(外文):Song-Dun Liao
論文名稱:潔淨室空調設備用化學濾網之異丙醇吸附性能研究
論文名稱(外文):Study on the performance of isopropanol adsorption filter in cleanroom air conditioning system
指導教授:胡石政
口試委員:林廸傅本然薛人瑋
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:冷凍空調工程系所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
畢業學年度:104
中文關鍵詞:化學濾網、異丙醇、汙染物吸附量、飽和貫穿時間、等溫吸附模式、吸附動力 模式
外文關鍵詞:Chemical filterIsopropanolAdsorption capacityBreakthrough timeAdsorption isotherm modelAdsorption kinetic model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技產品蓬勃發展,促使半導體製程線徑朝向微小化邁進,因此對於品質要求也就越來愈嚴格,為使其可靠度符合需求,製程上就必須比以往更謹慎地處理氣態分子汙染物所造成的影響,而化學濾網就是針對這些汙染物做過濾排除的一道防護。
本研究將利用自製的小型活性碳化學濾網測試系統,參考美國冷凍空調學會ASHRAE 145.2規範測試,將半導體廠常用於晶圓清洗的異丙醇作為目標汙染物,模擬0.3、0.5、0.7m/s面風速,10、35、50ppm加速測試濃度探討濾網的汙染物吸附量、飽和貫穿時間,評估濾網使用壽命,並進一步以Langmuir及Freundlich等溫吸附模式,擬一階、擬二階、內顆粒擴散三種吸附動力模式進行模擬,以確認較符合之模式及其反應常數,最後提供廠商一套測試標準及測試系統規格。
Through the vigorous development of the technology products, the semiconductor manufacturing processes take a step from diameter to miniaturization. The semiconductor industrials are more strictly with the quality requirements than before. In order to meet the requirements, the manufacturing processes handle the gaseous molecular contaminants more cautiously and the chemical filters are the protection which are aimed at removing contaminants. A small scale carbon chemical filter test system was constructed based on the American Society of Refrigeration and Air Conditioning (ASHRAE) standard 145.2. The semiconductor industrials use isopropanol to clean wafers, which is the main contaminants from manufacturing processes. The chemical filter’s adsorption capacity and breakthrough time were measured by simulating 0.3, 0.5, 0.7 m/s face velocities and 10, 35, 50 ppm concentrations, respectively. Furthermore, the robustness test was carrie by two adsorption isotherm models (Langmuir and Freundlich) and three adsorption kinetic models (Pseudo-First-Order, Pseudo-Second-Order, Intraparticle Diffusion). The aim of the robustness test is to confirm th the adopted methodology is to meet these models. Finally, the study provides a set of test standards and test system specifications to manufacturers.
摘 要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1潔淨室簡介 3
2.1.1潔淨室AMC分類與規範 4
2.1.2潔淨室AMC來源 7
2.2製程汙染來源與影響 9
2.3異丙醇應用與物化特性 11
2.3.1異丙醇對人體與環境之危害 13
2.4活性碳的基本性質 14
2.5活性碳化學濾網種類與應用 17
2.5.1活性碳化學濾網吸附方式 20
2.5.2吸附貫穿曲線 21
第三章 研究方法與原理 22
3.1化學濾網測試系統 22
3.2實驗設備與儀器 25
3.2.1乾燥潔淨空氣系統 (Clean Dry Air, CDA) 25
3.2.2離心風機 25
3.2.3低溫恆溫水槽 26
3.2.4純化器 26
3.2.5手持式TVOC氣體偵測器 27
3.2.6風速計 28
3.2.7溫濕度記錄器 29
3.2.8壓差計 29
3.2.9氣體洗滌瓶 30
3.2.10流量控制器 30
3.3實驗方法及步驟 32
3.3.1歸零氣體偵測器 32
3.3.2汙染物均勻量測 33
3.3.3風速量測 35
3.3.4壓力量測 37
3.3.5溫濕度量測 38
3.3.6汙染物濃度釋放 40
3.4實驗濾網尺寸及活性碳性質 41
3.5吸附量計算 42
3.6等溫吸附模式(Adsorption Isotherm model) 43
3.6.1 Langmuir等溫吸附模式 43
3.6.2 Freundlich等溫吸附模式 44
3.7吸附動力模式(Adsorption Kinetic Model) 45
3.7.1擬一階吸附動力模式(Pseudo-First-Order Model) 45
3.7.2擬二階吸附動力模式(Pseudo-Second-Order Model) 46
3.7.3內部顆粒擴散模式(Intraparticle Diffusion Model) 47
3.8以擬一階吸附動力模式計算模擬吸附量 48
3.9以擬二階吸附動力模式計算模擬吸附量 49
第四章 結果與討論 50
4.1化學濾網飽和吸附量 51
4.2化學濾網飽和貫穿時間結果 54
4.3 Langmuir等溫吸附模式結果 57
4.4 Freundlich等溫吸附模式結果 58
4.5擬一階吸附動力模式結果 60
4.6擬二階吸附動力模式結果 63
4.7內部顆粒擴散模式結果 66
4.8吸附模式分析結果 69
4.9預估濃度之貫穿時間結果 71
第五章 結論與建議 73
5.1結論 73
5.2建議 76
參考文獻 77
符號彙編 82
1.劉興學,「應用化學濾網去除某晶圓廠黃光區潔淨室之氨氣」,國立交通大學工學院產業安全與防災學程碩士論文,2008。
2.Wu, C. H., M. N. Lin, C. T. Feng, K. L. Yang, Y. S. Lo, J. G. Lo, “Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry,”Journal of Chromatography A, Volume 996, Issue 1-2, Pages 225-231, 2003.
3.International Organization for Standardization, ISO standard 14644-1,“Clean rooms and associated controlled environments-Part 1: Classification of air cleanliness,” Geneva, 1999.
4.International Organization for Standardization, ISO standard 14644-1, https://mikewilliamsonvalidation.wordpress.com/2013/09/18/iso-14644-what-it-is/
5.Muller, A. J., L. A. Psota, H. W. Krautter and J. D. Sinclair,“Volatile Cleanroom Contaminants : Sources and Detection,”Solid State Technology, 37(9), pp. 61-72, 1994.
6.Kitajima, H. and Y. Shiramizu,“Requirements for Contamination Control in the Gigabit Era,”IEEE Transactions on Semiconductor Manufacturing, 10(2), pp. 267-272, 1997.
7.Semiconductor Equipment and Materials International, SEMI standard F21-95, “Classification of Airborne Molecular Contaminant Levels in Clean Environments,”Mountain View, CA, USA, 1996.
8.Semiconductor Equipment and Materials International, SEMI Standard F21-1102, “Classification of Airborne Molecular Contaminant Levels in Clean Environments,”Mountain View, CA, USA, 2002.
9.International Technology Roadmap for Semiconductors (ITRS),“Technology Requirements for Wafer Environmental Contamination Control,”2012.
10.Tsai, C. J., C. T. Chang, Shankar G. Aggarwal and I. F. Hung,“Study of Inorganic Aerosol in Ambient Air Around Hsinchu Science Based Industrial Park,” Sixth International Aerosol Conference, pp.409-410, 2002.
11.國立清華大學,「新竹科學園區有害物監測分析」,新竹科學工業園區管理局研究計畫,2001。
12.Inoue, C., N. Mizuno, S. Ogura, Y. Hanayama, S. Hattori, K. Endo, K.Yasutake, M. Morita and Y. Mori,“Time variations of organic compound concentrations in a newly constructed cleanroom,”Journal of the Inst. Environ. Sci. & Technol., 44(2), pp. 23-29, 2001.
13.Lebens, J. A., W. C. McColgin and J. B. Russell,“Unintentional Doping of Wafers Due to Organophosphates in the Clean Room Ambient,”Journal of The Electrochemical Society, 143(9), 2906-2909, 1996.
14.張瑞琪,「影響無塵室空氣品質的汙染來源與成因」,潔淨科技,卷期10,頁51-54,2005。
15.經濟部工業局,「行業製程減廢及汙染防治技術-半導體產業介紹」。
16.Bai, H., Y. Kang and C. Liu,“Dimensional and Elemental Analysis of Particulate Contaminations on Silicon Wafers,”Aerosol & Air Quality Res. 2: 53-60, 2002.
17.Lue, S. J., T. Wu, H. Hsu and C. Huang,“Application of Ion Chromatography to the Semiconductor Industry : I. Measurement of Acidic Airborne Contaminants in Cleanroom,”Journal of Chromatography A, 804(1-2), 273-278, 1998.
18.Lue, S. J. and C. Huang,“Application of Ion Chromatography to the Semiconductor Industry : II. Measurement of Basic Airborne Contaminants in Cleanroom,”Journal of Chromatography A, 850(1-2), 283-287, 1999.
19.MacDonald, S. A., W. D. Hinsberg, H. R. Wendt, N. J. Clecak, and C. G. Willson,“Airborne contamination of a chemically amplified resist. 1. Identification of problem,”Chemistry of Materials, 5, 348-356, 1993.
20.Hinsberg, W. D., S. A. MacDonald, N. J. Clecak and C. D. Snyder,“Airborne contamination of a chemically amplified resist. 2. Effect of polymer film properties on contamination rate,”Chemistry of Materials, 6(4), 481-488, 1994.
21.Kinhead, D. A.,“Forecast of Airborne Molecular Contamination Limits for 0.25 Micron High Performance Logic Process,”Technology Transfer, Report 95052812A-TR, SEMATECH, May 31, 1995.
22.Barzaghi, S., A. Pilenga, G. Vergani, S. Guadagnuolo,“Purged Gas Purification for Contamination Control of DUV Stepper Lenses,”Solid State Technology, 44(9), 99-104, 2001.
23.Kinkead, D. A., A. Grayfer, O. Kishkovich, “Prevention of Optics and Resist Contamination in 300mm Lithography:Improvements in Chemical Air Filtration,” Extraction Systems Inc., 10 Forge Parkway, 2001.
24.http://study.com/academy/lesson/what-is-isopropyl-alcohol-uses-structure-formula.html
25.工研院工業安全衛生技術發展中心,「物質安全資料表」,2000。
26.行政院環境保護署,「毒物資料庫」,2012。
27.謝啟祥,「電場輔助化學機械拋光製程於銅模平坦化之研究」,國立台灣科技大學機械工程系碩士論文,2011。
28.The National Institute for Occupational Safety and Health,“Criteria for a Recommended Standard - Occupational Exposure to Isopropyl Alcohol,”March 1976.
29.International Agency for Research on Cancer,“LIST OF CLASSIFICATIONS,”VOLUME 15, 1999.
30.Occupational Safety and Health Administration,“Permissible Exposure Limit (PEL) - General Industry,”29 CFR 1910.1000, Table Z-1.
31.American Conference of Governmental Industrial Hygienists,“Documentation of the Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs) - Isopropanol.”
32.鄭慶堂,「以椰子纖維製備活性碳之研究」,國立屏東科技大學環境工程與科技系碩士論文,2005。
33.Chambre, Andre,“Effects of Carbon Filtration Type on Filter Efficiency and Efficacy: Granular Loose-Fill vs. Bonded Filters,”March 2014.
34.蔡文田、張慶源,「活性碳及其在空氣汙染防制之應用」,環境工程會刊,4(2),頁65-84,1993。
35.Bansal, R. C., J. B. Donnet, and F. Stoeckli,“Active carbon,”Marcel Dekker, New York, 1988.
36.Kim J., B. Kang,“DBPs removal in GAC filter-adsorber,”Water Research, Vol. 42, 145-152, 2008.
37.吳郎嘉,「利用活性碳纖維作為焚化廢棄重金屬吸附材料之可行性研究」,逢甲大學環境工程與科學研究所碩士論文,2002。
38.許峰明,「粒狀活性碳及活性碳纖維對氣、液相有機物之吸附、脫附研究」,元智大學化學工程研究所碩士論文,1993。
39.Japanese Industrial Standards, JISB 9901,“Gas-Removal-Method of Test for Performance of Gas-Removal Filter,”1997.
40.張蕙嵐,「結合光觸媒與化學濾網之協同作用去除室內揮發性有機污染物」,東海大學環境科學與工程研究所碩士論文,2010。
41.Ruthven, D. M.,“Principles of adsorption and adsorption processes,”John Wiley and Sons, New York, 1984.
42.白曛綾、盧重興、張國財、曾映棠、黃欣惠,「活性碳吸附塔」,操作績效自我評估管理制度手冊,2003。
43.American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.,“Laboratory Test Method for Assessing the Performance of Gas-Phase Air-Cleaning Systems: Air-Cleaning Devices, 145.2, 2011.
44.Scahill, J., E. J. Wolfrum, W. E. Michener, M. Bergmann, D. M. Blake, A. S. Watt, “A new method for the rapid determination of volatile organic compound breakthrough times for a sorbent at concentrations relevant to indoor air quality,”Journal of Air & Waste Management Association, 54(1), 105-110, 2004.
45.Langmuir I.,“The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, 40, 1361-1403, 1918.
46.Silva Da Rocha, M., K.. Iha, A. Cândido Faleiros, E. José Corat, M. Encarnación Vázquez Suárez-Iha,“Freundlich’s isotherm extended by statistical mechanics, ” J. Colloid Interface Sci. 185, 493-496, 1997.
47.Langergren, S.,“Zur Theorie der sogenannten Adsorption gelöster Stoffe,” Kungliga Svenska Vetenskapsakademiens, Handlingar, 24(4), 1-39, 1898.
48.Ho, Y. S., G. McKay, “Pseudo-second order for sorption processes,”Process Biochemistry, 34(5), pp. 451-465, 1999.
49.Guibal, E., I. Saucedo, J. Roussy, Ch. Roulph and P. Le Cloirec,“ Uranium sorption by glutamate glucan: a modified chitosan,”Part I: Equilibrium studies, Water SA., Vol. 19, pp. 113-118, 1993.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔