|
REFERENCES
1.J. R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys., 1961, 34, 862−863. 2.S. K. Deb, A novel electrophotographic system. Appl. Opt., 1969, 8(S1), 192−195. 3.R. J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res., 2011, 41, 241−268. 4.www.gentex.com 5.R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87−105. 6.F. C. Krebs, Electrochromic displays: the new black. Nat. Mater., 2008, 7, 766−767. 7.A. P. Weider, Multi-color electrochromic apparatus and methods, US Pat. 7,450,294 (2008). 8.(a) L. B. Groenendaal, G. Zotti, P.-H. Aubert, S. M. Waybright, J. R. Reynolds, Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater., 2003, 15, 855−879. (b) J. Roncali, P. Blanchard, P. Frere, 3,4-Ethylenedioxy- thiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J. Mater. Chem., 2005, 15, 1589−1610. (c) A. L. Dyer, M. R. Craig, J. E. Babiarz, K. Kiyak, J. R. Reynolds, Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes. Macromolecules, 2010, 43, 4460−4467. 9.A. Patra, M. Bendikov, Polyselenophenes. J. Mater. Chem., 2010, 20, 422−433. 10.H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012, 3, 255–264. 11.(a) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev., 2010, 110, 268−320. (b) A. Patra, Y. H. Wijsboom, G. Leitus, M. Bendikov, Tuning the band gap of low-band-gap polyselenophenes and polythiophenes: the effect of the heteroatom. Chem. Mater., 2011, 23, 896–906. (c) Y. H. Wijsboom, Y. Sheynin, A. Patra, N. Zamoshchik, R. Vardimon, G. Leitus, M. Bendikov, Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem., 2011, 21, 1368–1372. (d) G. Gunbas, L. Toppare, Electrochromic conjugated polyheterocycles and their derivatives—highlights from the last decade towards realization of long lived aspirations. Chem. Commun., 2012, 48, 1083−1101. (e) L. Beverina, G. A. Pagani, M. Sassi, Multichromophoric electrochromic polymers: color tuning of conjugated polymers through the side chain functionalization approach. Chem. Commun., 2014, 50, 5412−5430. 12.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461. 13.(a) Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. (b) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010. 14.(a) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (b) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488. 15.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277−1325. 16.J.-H. Wu, G.-S. Liou, High-performance electrofluorochromic devices based on electrochromism- and photoluminescence-active novel poly(4-cyanotriphenylamine). Adv. Funct. Mater., 2014, 24, 6422–6429. 17.(a) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307-316. (b) C.-W. Chang, G.-S. Liou, S.-H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties, J. Mater. Chem., 2007, 17, 1007–1015. (c) S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules, 2008, 41, 2800–2808. (d) Y.-C. Kung, G.-S. Liou, S.-H. Hsiao, Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1740–1755. (e) H.-J. Yen, G.-S. Liou, Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater., 2009, 21, 4062–4070. (f) Y.-C. Kung, S.-H. Hsiao, Fluorescent and electrochromic polyamides with pyrenylamine chromophore, J. Mater. Chem., 2010, 20, 5481–5492. (g) Y.-C. Kung, S.-H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units, J. Mater. Chem., 2011, 21, 1746–1754. (h) S.-H. Hsiao, H.-M. Wang, P.-C. Chang, Y.-R. Kung, T.-M. Lee, Synthesis and electrochromic properties of aromatic polyetherimides based on a triphenylamine-dietheramine monomer, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 2925–2938. (i) H.-M. Wang, S.-H. Hsiao, Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units, J. Mater. Chem. C, 2014, 2, 1553–1564. (j) S.-H. Hsiao, S.-J. Yeh, Synthesis and optoelectronic properties of Novel polyamides with 2-naphthyldiphenylamine units, Macromol. Chem. Phys., 2014, 215, 705–715. (k) S.-H. Hsiao, S.-L. Cheng, New electroactive and electrochromic aromatic polyamides with ether-linked bis(triphenylamine) units, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 496–510. (l) S.-H. Hsiao, C.-Y. Teng, Y.-R. Kung, Synthesis and characterization of novel electrochromic poly(amide-imide)s with N,N-di(4-methoxyphenyl)-N,N-diphenyl-p- phenylenediamine units, RSC. Adv., 2015, 5, 93591–93606. 18.(a) E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc., 1966, 88, 3498–3503. (b) R. F. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc., 1968, 90, 3925–3930. (c) S. C. Creason, J. Wheeler, R. F. Nelson, Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem., 1972, 37, 4440–4446. 19.(a) J. F. Ambrose, R. F. Nelson, Anodic oxidation pathways of carbazoles I. Carbazole and N-substituted derivatives. J. Electrochem. Soc.: Electrochem. Sci., 1968, 115, 1159–1164. (b) J. F. Ambrose, L. L. Carpenter, R. F. Nelson, Electrochemical and spectroscopic properties of cation radicals III. Reaction pathways of carbazolium radical ions. J. Electrochem. Soc.: Electrochem. Sci. Technol., 1975, 122, 876–894. 20.(a) J. Natera, L. Otero, L. Sereno, F. Fungo, N. S. Wang, Y.-M. Tsai, T.-Y. Hwu, K.-T. Wong, A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 2007, 40, 4456–4463. (b) C.-C. Chiang, H.-C. Chen, C.-s. Lee, M.-k. Leung, K.-R. Lin, K.-H. Hsieh, Electrochemical deposition of bis(N,N’-diphenylaminoaryl) substituted ferrocenes, and their application as a hole-injection layer on polymeric light-emitting diodes. Chem. Mater., 2008, 20, 540–552. (c) J. Natera, L. Otero, F. D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, K.-T. Wong, Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules, 2009, 42, 626–635. (d) M. I. Mangione, R. A. Spanevello, A. Rumbero, D. Heredia, G. Marzari, L. Fernandez, L. Otero, F. Fungo, Electrogenerated conductive polymers from triphenylamine end-capped dendrimers. Macromolecules, 2013, 46, 4754–4763. (e) S.-H. Hsiao, J.-W. Lin, Facile preparation of electrochromic poly(amine-imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770−6778. 21.(a) S. Koyuncu, B. Gultekin, C. Zafer, H. Bilgili, M. Can, S. Demic, I. Kaya, S. Icli, Electrochim. Acta, 2009, 54, 5694–5702. (b) O. Usluer, S. Koyuncu, S. Demic, R. A. Janssen, J. Polym. Sci. Part B: Polym. Phys., 2011, 49, 333–341. (c) S.-H. Hsiao, J.-W. Lin, Facile fabrication of electrochromic poly(amine-amide) and poly(amine-imide) films via carbazole-based oxidative coupling electropolymerization. Macromol. Chem. Phys., 2014, 215, 1525–1532. (d) S.-H. Hsiao, J.-C. Hsueh, Electrochemical synthesis and electrochromic properties of new conjugated polycarbazoles from di(carbazol-9-yl)-substituted triphenylamine and N-phenylcarbazole derivatives. J. Electroana. Chem., 2015, 758, 100–110. (e) S.-H. Hsiao, S.-W. Lin, Electrochemical synthesis of electrochromic polycarbazole films from N-phenyl-3,6-bis(N-carbazolyl)carbazoles. Polym. Chem., 2016, 7, 198–211. (f) M. I. Mangione, R. A. Spanevello, D. Minudri, D. Heredia, L. Fernandez, L. Oterp, F. Fungo. Electropolimerization of functionalized carbazole end-capped dendrimers. Formation of conductive films. Electrochim. Acta, 2016, 207, 143–151. 22.(a) C. M. Amb, P. M. Beaujuge, J. R. Reynolds, Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach. Adv. Mater., 2010, 22, 724−728. (b) A. L. Dyer, E. J. Thompson, J. R. Reynolds, Completing the color palette with spray-processable polymer electrochromics. ACS Appl. Mater. Interfaces, 2011, 3, 1787−1795. (c) G. Hizalan, A. Balan, D. Baran, L. Toppare, Spray processable ambipolar benotriazole bearing electrochromic polymers with multi-colored and transmissive states. J. Mater. Chem., 2011, 21, 1804−1809. (d) P. M. Beajuge, S. V. Vasilyeva, D. Y. Liu, S. Ellinger, T. D. McCarley, J. R. Reynolds, Structure-performance correlations in spray-processable green dioxythiophene-benzothiadiazole donor-acceptor polymer electrochromes. Chem. Mater., 2012, 24. 255−268. 23.(a) S. Koyuncu, O. Usluer, M. Can, S. Demic, S. Icli, N. S. Sariciftci, Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system. J. Mater. Chem., 2011, 21, 2684−2693. (b) M. Icli-Ozkut, Z. Oztas, F. Algi, A. Cihaner, A neutral state yellow to navy polymer electrochrome with pyrene scaffold. Org. Electron., 2011, 12, 1505−1511. (c) E. Karabiyik, E. Sefer, F. Baycan Koyuncu, M. Tonga, E. Ozdemir, S. Koyuncu, Toward purple-to-green-to-transmissive-to-black color switching in polymeric electrochrome. Macromolecules, 2014, 47, 8578−8584. (d) B. Karabay, L. C. Pekel, A. Cihaner, A pure blue to highly transmissive electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high optical contrast ratio. Macromolecules, 2015, 48, 1352−1357. 24.S.-H. Hsiao, Y.-T. Chiu, Electrosynthesis and electrochromic properties of poly(amide-triarylamine)s containing triptycene units. RSC Adv., 2015, 5, 90941−90951. REFERENCES
1.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007. 2.(a) D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater., 2001, 13, 783−793. (b) P. R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys., 2002, 77, 117−133. (c) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18. (d) R. J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res., 2011, 41, 241−268. 3.(a) F. S. Ham, M. Higuchi, D. G. Kurth, Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: photophysical, electrochemical, and electrochromic properties. J. Am. Chem. Soc., 2008, 130, 2073−2081. (b) A. Maier, A. R. Rabindranath, B. Tieke, Fast-switching electrochromic films of zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly. Adv. Mater., 2009, 21, 959−963. (c) C.-J. Yao, Y.-W. Zhong, J.-N. Yao, Five-stage near-infrared electrochromism in electropolymerized films composed of alternating cyclometalated bisruthenium and bis-triarylamine segments. Inorg. Chem., 2013, 52, 10000−10008. (d) M. Schott, H. Lorrmann, W. Szczerba, M. Beck, D. G. Kurth, State-of-the-art electrochromic materials based on metallo-supramolecular polymers. Sol. Energy Mater. Sol. Cells, 2014, 126, 68−73. (e) C.-W. Hu, T. Sato, J. Zhang, S. Moriyama, M. Higuchi, Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency. ACS Appl. Mater. Interfaces, 2014, 6, 9118−9125. (f) C. Fan, C. Ye, X. Wang, Z. Chen, Y. Zhou, Z. Liang, X. Tao, Synthesis and electrochromic properties of new terpyridine-triphenylamine hybrid polymers. Macromolecules, 2015, 48, 6465−6473. 4.(a) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev., 2010, 110, 268−320. (b) A. Patra, Y. H. Wijsboom, G. Leitus, M. Bendikov, Tuning the band gap of low-band-gap polyselenophenes and polythiophenes: the effect of the heteroatom. Chem. Mater., 2011, 23, 896–906. (c) Y. H. Wijsboom, Y. Sheynin, A. Patra, N. Zamoshchik, R. Vardimon, G. Leitus, M. Bendikov, Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem., 2011, 21, 1368–1372. (d) G. Gunbas, L. Toppare, Electrochromic conjugated polyheterocycles and their derivatives—highlights from the last decade towards realization of long lived aspirations. Chem. Commun., 2012, 48, 1083−1101. (e) L. Beverina, G. A. Pagani, M. Sassi, Multichromophoric electrochromic polymers: color tuning of conjugated polymers through the side chain functionalization approach. Chem. Commun., 2014, 50, 5412−5430. 5.(a) K. Bange, T. Gambke, Electrochromic materials for optical switching devices. Adv. Mater., 1990, 2, 10−16. (b) F. C. Krebs, Electrochromic displays: the new black. Nat. Mater., 2008, 7, 766−767. (c) A. M. Osterholm, D. E. Shen, J. A. Kerszulis, R. H. Bulloch, M. Kuepfert, A. L. Dyer, J. R. Reynolds, Four shades of brown: Tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl. Mater. Interfaces, 2015, 7, 1413−1421. (d) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87−105. (e) N. Kobayashi, S. Miura, M. Nishimura, H. Urano, Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells, 2008, 92, 136−139. (f) P. Tehrani, L. O. Hennerdal, A. L. Dyer, J. R. Reynolds, M. Berrgren, Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem., 2009, 19, 1799−1802. (g) G. Sonmez, H. B. Sonmez, Polymeric electrochromics for data storage. J. Mater. Chem., 2006, 16, 2473−2477. (h) S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater., 2009, 21, 1504−1513. (i) H. Yu, S. Shao, L. Yan, H. Meng, Y. He, C. Yao, P. Xu, X. Zhang, W. Hu, W. Huang, Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application, J. Mater. Chem. C, 2016, 4, 2269-2273. 6.www.gentex.com 7.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461. 8.(a) Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. (b) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010. 9.(a) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (b) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488. 10.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277−1325. 11.(a) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307-306. (b) C.-W. Chang, G.-S. Liou, S.-H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties, J. Mater. Chem., 2007, 17, 1007–1015. (c) S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine- functionalized aromatic polyamides. Macromolecules, 2008, 41, 2800–2808. (d) Y.-C. Kung, G.-S. Liou, S.-H. Hsiao, Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1740–1755. (e) H.-J. Yen, G.-S. Liou, Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater., 2009, 21, 4062–4070. (f) Y.-C. Kung, S.-H. Hsiao, Fluorescent and electrochromic polyamides with pyrenylamine chromophore, J. Mater. Chem., 2010, 20, 5481–5492. (g) Y.-C. Kung, S.-H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units, J. Mater. Chem., 2011, 21, 1746–1754. (h) H.-J. Yen, G.-S. Liou, Solution-processabletriarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012, 3, 255–264. (i) S.-H. Hsiao, H.-M. Wang, P.-C. Chang, Y.-R. Kung, T.-M. Lee, Synthesis and electrochromic properties of aromatic polyetherimides based on a triphenylamine-dietheramine monomer, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 2925–2938. (j) H.-M. Wang, S.-H. Hsiao, Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units, J. Mater. Chem. C, 2014, 2, 1553–1564. (k) J.-H. Wu, G.-S. Liou, High-performance electrofluorochromic devices based on electrochromism- and photoluminescence-active novel poly(4-cyanotriphenylamine). Adv. Funct. Mater., 2014, 24, 6422–6429. (l) S.-H. Hsiao, S.-J. Yeh, Synthesis and optoelectronic properties of Novel polyamides with 2-naphthyldiphenylamine units, Macromol. Chem. Phys., 2014, 215, 705–715. (m) S.-H. Hsiao, S.-L. Cheng, New electroactive and electrochromic aromatic polyamides with ether-linked bis(triphenylamine) units, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 496–510. (n) S.-H. Hsiao, C.-Y. Teng, Y.-R. Kung, Synthesis and characteriztion of novel electrochromic poly(amide-imide)s with N,N-di(4-methoxyphenyl)-N,N-diphenyl-p-phenylenediamine units, RSC. Adv., 2015, 5, 93591–93606. 12.E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc., 1966, 88, 3498–3503. 13.R. F. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc., 1968, 90, 3925–3930. 14.(a) M.-k. Leung, M.-Y. Chou, Y.-O. Su, C.-L. Chiang, H.-L. Chen, C.-F. Yang, C.-C. Yang, C.-C. Lin, H.-T. Chen, Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization. Org. Lett., 2003, 5, 839–842. (b) J. Natera, L. Otero, L. Sereno, F. Fungo, N. S. Wang, Y.-M. Tsai, T.-Y. Hwu, K.-T. Wong, A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 2007, 40, 4456–4463. (c) C.-C. Chiang, H.-C. Chen, C.-s. Lee, M.-k. Leung, K.-R. Lin, K.-H. Hsieh, Electrochemical deposition of bis(N,N’-diphenylaminoaryl) substituted ferrocenes, and their application as a hole-injection layer on polymeric light-emitting diodes. Chem. Mater., 2008, 20, 540–552. (d) J. Natera, L. Otero, F. D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, K.-T. Wong, Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules, 2009, 42, 626–635. (e) M. I. Mangione, R. A. Spanevello, A. Rumbero, D. Heredia, G. Marzari, L. Fernandez, L. Otero, F. Fungo, Electrogenerated conductive polymers from triphenylamine end-capped dendrimers. Macromolecules, 2013, 46, 4754–4763. (f) S.-H. Hsiao, J.-W. Lin, Facile preparation of electrochromic poly(amine-imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770−6778. 15.(a) S.-H. Hsiao and Y.-T. Chiu, Electrosynthesis and electrochromic properties of poly(amide-triarylamine)s containing triptycene units. RSC. Adv., 2015, 5, 90941−90951. (b) S.-H. Hsiao and J.-Y. Lin. Electrosynthesis of ambipolar electrochromic polymer films from anthraquinone-triarylamine hybrids. J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 644−655. (c) S.-H. Hsiao, S.-W. Lin, The electrochemical fabrication of electroactive polymer films from diamide- or diimide-cored N-phenylcarbazole dendrons for electrochromic applications. J. Mater. Chem. C, 2016, 4, 1271–1280. (d) S.-H. Hsiao, H.-M. Wang, Facile fabrication of redox-active and electrochromic poly(amide-amine) films through electrochemical oxidative coupling of arylamino groups. J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 2476−2485. (e) S.-H. Hsiao, H.-M. Wang, Electrochemically fabricated electrochromic films from 4-(N-carbazolyl)triphenylamine and its dimethoxy derivatives. RSC Adv., 2016, 6, 43470-43479. (f) S.-H. Hsiao, L.-C. Wu, Fluorescent and electrochromic polymers from 2,8-di(carbazol-9-yl)dibenzothiophene and its S,S-dioxide derivative. Dyes Pigments, 2016, 134, 51–63.
|