跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡志
研究生(外文):Yi-Zhi-Chen
論文名稱:具三苯胺核心的星狀放射高分子 及雙極性聚(芳香胺-醯亞胺) 之電合成與光電特性研究
論文名稱(外文):Electrosynthesis and Optoelectronic Properties of Triphenylamine-cored Starburst Polymers and Ambipolar Poly(arylamine-imide)s
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
口試委員:劉貴生陳志堅吳知易
口試委員(外文):Guey-Sheng LiouJyh-Chien ChenTzi-Yi Wu
口試日期:20160728
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
語文別:英文
中文關鍵詞:電致變色光譜電化學電聚合電化學咔唑三苯胺星狀高分子
外文關鍵詞:electrochromismspectroelectrochemistryelectropolymerizationelectrochemistrycarbazolestarburstTriphenylamine-cored
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先合成代碼分別為T-3(NHCO-TPA)、T-3(NHCO-NPC)、T-3(CONH-TPA)及 T-3(CONH-NPC)四種以三苯胺為核心經由醯胺基 (−NHCO− 或 −CONH−) 連接三苯胺 (triphenylamine; TPA) 或N-苯基咔唑(N-phenylcarbazole; NPC) 末端基的星狀分子,並探討它們的電化學和電聚合性質。這些星狀分子的氧化電位與氧化態結構的穩定性受到醯胺鍵方向及末端三芳香胺結構的影響。藉由反覆數次的循環伏安掃描探討這些星狀化合物的電化學及電聚合性質,其中T-3(NHCO-TPA) 及T-3(CONH-NPC)在溶有四丁基銨次氯酸鹽(tetrabutylammonium perchlorate)的二氯甲烷的溶液中經由反覆數次的循環伏安掃描可在ITO電極表面電聚合生成電活性的高分子薄膜。這些電聚合薄膜具有可逆的電化學氧化還原反應並且伴隨著顯著的顏色變化。這些高分子薄膜的電致變色行為可藉由光譜電化學清楚地解釋,多次開關測試研究則用來評估電聚合薄膜的電致變色穩定性。
在論文的第二部分,我們利用4-胺基三苯胺(4-aminotriphenylamine; TPA-NH2)分別與芳香族二酸酐pyromellitic dianhydride (PMDA)、 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) 及 3,4,9,10-perylenetetracarboxylic dianhydride (PTDA)縮合反應備製三個雙三苯胺二醯亞胺化合物[bis(triphenylamine)-diimide] TPA-PMDI、TPA-NTDI及TPA-PTDI。這些末端含三苯胺的二醯亞胺單體可在電解液中透過三苯胺基團的電氧化偶合反應於電極表面上生成聚(芳香胺-醯亞胺)薄膜TPA-PMPI、 TPA-NTPI及 TPA-PTPI。這些電沉積的高分子薄膜的循環伏安圖顯示它們具有兩性的氧化還原行為,在陽極掃描時出現一對可逆的氧化還原峰,半波電位(E1/2)約在0.99−1.02 V之間;在陰極掃描時則出現兩對氧化還原峰。這些電聚合薄膜具有多顏色的陰極與陽極變色行為。我們亦以這些電聚合薄膜作為電活性層製作成電致變色元件,評估它們在電致變色元件應用的可能性。
In the first part of this thesis, four star-shaped molecules with triphenylamine (TPA) core through the amide group (−NHCO− or −CONH−) linked to the terminal triphenylamine or N-phenylcarbazole (NPC) unit, coded as T-3(NHCO-TPA), T-3(NHCO-NPC), T-3(CONH-TPA), and T-3(CONH-NPC), were synthesized and their electrochemistry and electropolymerization behaviors were investigated. The oxidation potential and the stability of the oxidized forms of the starbursts are affected by the orientation of amide linkage and the structure of terminal triarylamino group. Robust polymeric films could be built onto ITO/glass surface by repetitive cyclic voltammetry of the monomer solutions of T-3(NHCO-TPA) and T-3(CONH-NPC) in dichloromethane containing tetrabutylammonium perchlorate as supporting electrolyte. The electrodeposited films exhibited reversible electrochemical processes and strong color changes upon electro-oxidation, which can be switched by potential modulation. The remarkable electrochromic behavior of the film was clearly interpreted on the basis of spectroelectrochemical studies, and the electrochromic stability was evaluated by the electrochromic switching studies.
In the second part of this thesis, three bis(triphenylamine)-diimide compounds, TPA-PMDI, TPA-NTDI and TPA-PTDI, were synthesized from condensation of 4-aminotriphenylamine with pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTDA), respectively. Redox-active poly(arylamine-imide) films coded as TPA-PMPI, TPA-NTPI, and TPA-PTPI could be electrodeposited robustly on the electrode surface from the bis(triphenylamine)-diimides in an electrolyte solution via the oxidative coupling reactions between TPA terminal groups. The cyclic voltammograms of these electrodeposited films showed an ambipolar redox behavior, with a reversible redox couple at half wave potential (E1/2) of 0.99−1.02 V during the anodic scanning and two pairs of redox waves during cathodic scanning. The polymer films exhibited multicolored anodic and cathodic coloring. Electrochromic devices using the electropolymerized films as active layers were also fabricated as preliminary investigations for electrochromic applications.
CONTENT
摘要 i
ACKNOWLEDGEMENTS iii
ABSTRACT iv
CONTENT vi
LIST OF SCHEMES viii
LIST OF TABLES ix
LIST OF FIGURES x

Part I 
ABSTRACT 2
CHAPTER 1 INTRODUTION 3
CHAPTER 2 EXPERIMENTAL 6
2.1 Materials and Instrumentation 6
2.1.1 Materials 6
2.1.2 Instrumentation 6
2.2 Monomer Synthesis 7
2.2.1 T-3(NHCO-TPA) 7
2.2.2 T-3(NHCO-NPC) 8
2.2.3 T-3(CONH-TPA) 9
2.2.4 T-3(CONH-NPC) 10
2.3 Synthesis of Model Compounds 10
2.3.1 T-3(NHCO-Ph) 10
2.3.2 T-3(CONH-Ph) ………. 11
2.4 Electrochemical Polymerization 12
2.5 Fabrication of Electrochromic Devices 12
CHAPTER 3 RESULTS AND DISCUSSION 14
3.1 Monomer Synthesis 14
3.2 Electrochemical Activity and Polymerization of Monomers 27
3.3 Optical Properties 36
3.4 Redox Response of the Polymer Films 38
3.5 Electro-optical Properties of Polymers 43
3.6 Electrochromic Switching 46
3.7 Electrochromic Device 51
CHAPTER 4 CONCLUSIONS 53
REFERENCES 54
Part II
ABSTRACT 62
CHAPTER 1 INTRODUCTION 63
CHAPTER 2 EXPERIMENTAL 66
2.1 Materials and Instrumentation 66
2.1.1 Materials 66
2.1.2 Instrumentation 67
2.2 Monomer Synthesis 68
2.2.1 N,N’-Bis(4-diphenylaminophenyl)pyromellitimide (TPA-PMDI) 68
2.2.2 N,N’-Bis(4-diphenylaminophenyl)naphthalene-1,4,5,8-dicarboximide (TPA-NTDI) 68
2.2.3 N,N’-Bis(4-diphenylaminophenyl)perylene-3,4,9,10-dicarboximide (TPA-PTDI) 69
2.3 Synthesis of Model Compounds 69
2.3.1 N-(4-diphenylaminophenyl)phthalimide (M1) 70
2.3.2 N-(4-diphenylaminophenyl)-1,8-naphthalimide (M2) 70
2.4 Electrochemical Polymerization 71
2.5 Fabrication of Electrochromic Devices 71
CHAPTER 3 RESULTS AND DISCUSSION 73
3.1 Monomer Synthesis 73
3.2 Electrochemical Activity of Monomers 83
3.3 Optical Properties 88
3.4 Redox Response of Polymers 90
3.5 Spectroelectrochemical Properties 96
3.6 Electrochromic Switching 102
3.7 Electrochromic Devices 108
CHAPTER 4 CONCLUCSIONS 110
REFERENCES 111
REFERENCES

1.J. R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys., 1961, 34, 862−863.
2.S. K. Deb, A novel electrophotographic system. Appl. Opt., 1969, 8(S1), 192−195.
3.R. J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res., 2011, 41, 241−268.
4.www.gentex.com
5.R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87−105.
6.F. C. Krebs, Electrochromic displays: the new black. Nat. Mater., 2008, 7, 766−767.
7.A. P. Weider, Multi-color electrochromic apparatus and methods, US Pat. 7,450,294 (2008).
8.(a) L. B. Groenendaal, G. Zotti, P.-H. Aubert, S. M. Waybright, J. R. Reynolds, Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater., 2003, 15, 855−879. (b) J. Roncali, P. Blanchard, P. Frere, 3,4-Ethylenedioxy- thiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J. Mater. Chem., 2005, 15, 1589−1610. (c) A. L. Dyer, M. R. Craig, J. E. Babiarz, K. Kiyak, J. R. Reynolds, Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes. Macromolecules, 2010, 43, 4460−4467.
9.A. Patra, M. Bendikov, Polyselenophenes. J. Mater. Chem., 2010, 20, 422−433.
10.H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012, 3, 255–264.
11.(a) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev., 2010, 110, 268−320. (b) A. Patra, Y. H. Wijsboom, G. Leitus, M. Bendikov, Tuning the band gap of low-band-gap polyselenophenes and polythiophenes: the effect of the heteroatom. Chem. Mater., 2011, 23, 896–906. (c) Y. H. Wijsboom, Y. Sheynin, A. Patra, N. Zamoshchik, R. Vardimon, G. Leitus, M. Bendikov, Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem., 2011, 21, 1368–1372. (d) G. Gunbas, L. Toppare, Electrochromic conjugated polyheterocycles and their derivatives—highlights from the last decade towards realization of long lived aspirations. Chem. Commun., 2012, 48, 1083−1101. (e) L. Beverina, G. A. Pagani, M. Sassi, Multichromophoric electrochromic polymers: color tuning of conjugated polymers through the side chain functionalization approach. Chem. Commun., 2014, 50, 5412−5430.
12.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461.
13.(a) Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. (b) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010.
14.(a) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (b) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488.
15.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277−1325.
16.J.-H. Wu, G.-S. Liou, High-performance electrofluorochromic devices based on electrochromism- and photoluminescence-active novel poly(4-cyanotriphenylamine). Adv. Funct. Mater., 2014, 24, 6422–6429.
17.(a) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307-316. (b) C.-W. Chang, G.-S. Liou, S.-H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties, J. Mater. Chem., 2007, 17, 1007–1015. (c) S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules, 2008, 41, 2800–2808. (d) Y.-C. Kung, G.-S. Liou, S.-H. Hsiao, Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1740–1755. (e) H.-J. Yen, G.-S. Liou, Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater., 2009, 21, 4062–4070. (f) Y.-C. Kung, S.-H. Hsiao, Fluorescent and electrochromic polyamides with pyrenylamine chromophore, J. Mater. Chem., 2010, 20, 5481–5492. (g) Y.-C. Kung, S.-H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units, J. Mater. Chem., 2011, 21, 1746–1754. (h) S.-H. Hsiao, H.-M. Wang, P.-C. Chang, Y.-R. Kung, T.-M. Lee, Synthesis and electrochromic properties of aromatic polyetherimides based on a triphenylamine-dietheramine monomer, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 2925–2938. (i) H.-M. Wang, S.-H. Hsiao, Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units, J. Mater. Chem. C, 2014, 2, 1553–1564. (j) S.-H. Hsiao, S.-J. Yeh, Synthesis and optoelectronic properties of Novel polyamides with 2-naphthyldiphenylamine units, Macromol. Chem. Phys., 2014, 215, 705–715. (k) S.-H. Hsiao, S.-L. Cheng, New electroactive and electrochromic aromatic polyamides with ether-linked bis(triphenylamine) units, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 496–510. (l) S.-H. Hsiao, C.-Y. Teng, Y.-R. Kung, Synthesis and characterization of novel electrochromic poly(amide-imide)s with N,N-di(4-methoxyphenyl)-N,N-diphenyl-p- phenylenediamine units, RSC. Adv., 2015, 5, 93591–93606.
18.(a) E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc., 1966, 88, 3498–3503. (b) R. F. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc., 1968, 90, 3925–3930. (c) S. C. Creason, J. Wheeler, R. F. Nelson, Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem., 1972, 37, 4440–4446.
19.(a) J. F. Ambrose, R. F. Nelson, Anodic oxidation pathways of carbazoles I. Carbazole and N-substituted derivatives. J. Electrochem. Soc.: Electrochem. Sci., 1968, 115, 1159–1164. (b) J. F. Ambrose, L. L. Carpenter, R. F. Nelson, Electrochemical and spectroscopic properties of cation radicals III. Reaction pathways of carbazolium radical ions. J. Electrochem. Soc.: Electrochem. Sci. Technol., 1975, 122, 876–894.
20.(a) J. Natera, L. Otero, L. Sereno, F. Fungo, N. S. Wang, Y.-M. Tsai, T.-Y. Hwu, K.-T. Wong, A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 2007, 40, 4456–4463. (b) C.-C. Chiang, H.-C. Chen, C.-s. Lee, M.-k. Leung, K.-R. Lin, K.-H. Hsieh, Electrochemical deposition of bis(N,N’-diphenylaminoaryl) substituted ferrocenes, and their application as a hole-injection layer on polymeric light-emitting diodes. Chem. Mater., 2008, 20, 540–552. (c) J. Natera, L. Otero, F. D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, K.-T. Wong, Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules, 2009, 42, 626–635. (d) M. I. Mangione, R. A. Spanevello, A. Rumbero, D. Heredia, G. Marzari, L. Fernandez, L. Otero, F. Fungo, Electrogenerated conductive polymers from triphenylamine end-capped dendrimers. Macromolecules, 2013, 46, 4754–4763. (e) S.-H. Hsiao, J.-W. Lin, Facile preparation of electrochromic poly(amine-imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770−6778.
21.(a) S. Koyuncu, B. Gultekin, C. Zafer, H. Bilgili, M. Can, S. Demic, I. Kaya, S. Icli, Electrochim. Acta, 2009, 54, 5694–5702. (b) O. Usluer, S. Koyuncu, S. Demic, R. A. Janssen, J. Polym. Sci. Part B: Polym. Phys., 2011, 49, 333–341. (c) S.-H. Hsiao, J.-W. Lin, Facile fabrication of electrochromic poly(amine-amide) and poly(amine-imide) films via carbazole-based oxidative coupling electropolymerization. Macromol. Chem. Phys., 2014, 215, 1525–1532. (d) S.-H. Hsiao, J.-C. Hsueh, Electrochemical synthesis and electrochromic properties of new conjugated polycarbazoles from di(carbazol-9-yl)-substituted triphenylamine and N-phenylcarbazole derivatives. J. Electroana. Chem., 2015, 758, 100–110. (e) S.-H. Hsiao, S.-W. Lin, Electrochemical synthesis of electrochromic polycarbazole films from N-phenyl-3,6-bis(N-carbazolyl)carbazoles. Polym. Chem., 2016, 7, 198–211. (f) M. I. Mangione, R. A. Spanevello, D. Minudri, D. Heredia, L. Fernandez, L. Oterp, F. Fungo. Electropolimerization of functionalized carbazole end-capped dendrimers. Formation of conductive films. Electrochim. Acta, 2016, 207, 143–151.
22.(a) C. M. Amb, P. M. Beaujuge, J. R. Reynolds, Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach. Adv. Mater., 2010, 22, 724−728. (b) A. L. Dyer, E. J. Thompson, J. R. Reynolds, Completing the color palette with spray-processable polymer electrochromics. ACS Appl. Mater. Interfaces, 2011, 3, 1787−1795. (c) G. Hizalan, A. Balan, D. Baran, L. Toppare, Spray processable ambipolar benotriazole bearing electrochromic polymers with multi-colored and transmissive states. J. Mater. Chem., 2011, 21, 1804−1809. (d) P. M. Beajuge, S. V. Vasilyeva, D. Y. Liu, S. Ellinger, T. D. McCarley, J. R. Reynolds, Structure-performance correlations in spray-processable green dioxythiophene-benzothiadiazole donor-acceptor polymer electrochromes. Chem. Mater., 2012, 24. 255−268.
23.(a) S. Koyuncu, O. Usluer, M. Can, S. Demic, S. Icli, N. S. Sariciftci, Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system. J. Mater. Chem., 2011, 21, 2684−2693. (b) M. Icli-Ozkut, Z. Oztas, F. Algi, A. Cihaner, A neutral state yellow to navy polymer electrochrome with pyrene scaffold. Org. Electron., 2011, 12, 1505−1511. (c) E. Karabiyik, E. Sefer, F. Baycan Koyuncu, M. Tonga, E. Ozdemir, S. Koyuncu, Toward purple-to-green-to-transmissive-to-black color switching in polymeric electrochrome. Macromolecules, 2014, 47, 8578−8584. (d) B. Karabay, L. C. Pekel, A. Cihaner, A pure blue to highly transmissive electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high optical contrast ratio. Macromolecules, 2015, 48, 1352−1357.
24.S.-H. Hsiao, Y.-T. Chiu, Electrosynthesis and electrochromic properties of poly(amide-triarylamine)s containing triptycene units. RSC Adv., 2015, 5, 90941−90951.
REFERENCES

1.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2.(a) D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater., 2001, 13, 783−793. (b) P. R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys., 2002, 77, 117−133. (c) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2−18. (d) R. J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res., 2011, 41, 241−268.
3.(a) F. S. Ham, M. Higuchi, D. G. Kurth, Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: photophysical, electrochemical, and electrochromic properties. J. Am. Chem. Soc., 2008, 130, 2073−2081. (b) A. Maier, A. R. Rabindranath, B. Tieke, Fast-switching electrochromic films of zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly. Adv. Mater., 2009, 21, 959−963. (c) C.-J. Yao, Y.-W. Zhong, J.-N. Yao, Five-stage near-infrared electrochromism in electropolymerized films composed of alternating cyclometalated bisruthenium and bis-triarylamine segments. Inorg. Chem., 2013, 52, 10000−10008. (d) M. Schott, H. Lorrmann, W. Szczerba, M. Beck, D. G. Kurth, State-of-the-art electrochromic materials based on metallo-supramolecular polymers. Sol. Energy Mater. Sol. Cells, 2014, 126, 68−73. (e) C.-W. Hu, T. Sato, J. Zhang, S. Moriyama, M. Higuchi, Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency. ACS Appl. Mater. Interfaces, 2014, 6, 9118−9125. (f) C. Fan, C. Ye, X. Wang, Z. Chen, Y. Zhou, Z. Liang, X. Tao, Synthesis and electrochromic properties of new terpyridine-triphenylamine hybrid polymers. Macromolecules, 2015, 48, 6465−6473.
4.(a) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev., 2010, 110, 268−320. (b) A. Patra, Y. H. Wijsboom, G. Leitus, M. Bendikov, Tuning the band gap of low-band-gap polyselenophenes and polythiophenes: the effect of the heteroatom. Chem. Mater., 2011, 23, 896–906. (c) Y. H. Wijsboom, Y. Sheynin, A. Patra, N. Zamoshchik, R. Vardimon, G. Leitus, M. Bendikov, Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem., 2011, 21, 1368–1372. (d) G. Gunbas, L. Toppare, Electrochromic conjugated polyheterocycles and their derivatives—highlights from the last decade towards realization of long lived aspirations. Chem. Commun., 2012, 48, 1083−1101. (e) L. Beverina, G. A. Pagani, M. Sassi, Multichromophoric electrochromic polymers: color tuning of conjugated polymers through the side chain functionalization approach. Chem. Commun., 2014, 50, 5412−5430.
5.(a) K. Bange, T. Gambke, Electrochromic materials for optical switching devices. Adv. Mater., 1990, 2, 10−16. (b) F. C. Krebs, Electrochromic displays: the new black. Nat. Mater., 2008, 7, 766−767. (c) A. M. Osterholm, D. E. Shen, J. A. Kerszulis, R. H. Bulloch, M. Kuepfert, A. L. Dyer, J. R. Reynolds, Four shades of brown: Tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl. Mater. Interfaces, 2015, 7, 1413−1421. (d) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87−105. (e) N. Kobayashi, S. Miura, M. Nishimura, H. Urano, Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells, 2008, 92, 136−139. (f) P. Tehrani, L. O. Hennerdal, A. L. Dyer, J. R. Reynolds, M. Berrgren, Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem., 2009, 19, 1799−1802. (g) G. Sonmez, H. B. Sonmez, Polymeric electrochromics for data storage. J. Mater. Chem., 2006, 16, 2473−2477. (h) S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells base on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater., 2009, 21, 1504−1513. (i) H. Yu, S. Shao, L. Yan, H. Meng, Y. He, C. Yao, P. Xu, X. Zhang, W. Hu, W. Huang, Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application, J. Mater. Chem. C, 2016, 4, 2269-2273.
6.www.gentex.com
7.M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng., 2002, 287, 442–461.
8.(a) Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15, 75–93. (b) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev., 2007, 107, 953–1010.
9.(a) Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun., 2009, 5483–5495. (b) M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev., 2013, 42, 3453–3488.
10.A. Iwan, D. Sek, Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci., 2011, 36, 1277−1325.
11.(a) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38, 307-306. (b) C.-W. Chang, G.-S. Liou, S.-H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties, J. Mater. Chem., 2007, 17, 1007–1015. (c) S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine- functionalized aromatic polyamides. Macromolecules, 2008, 41, 2800–2808. (d) Y.-C. Kung, G.-S. Liou, S.-H. Hsiao, Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1740–1755. (e) H.-J. Yen, G.-S. Liou, Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater., 2009, 21, 4062–4070. (f) Y.-C. Kung, S.-H. Hsiao, Fluorescent and electrochromic polyamides with pyrenylamine chromophore, J. Mater. Chem., 2010, 20, 5481–5492. (g) Y.-C. Kung, S.-H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units, J. Mater. Chem., 2011, 21, 1746–1754. (h) H.-J. Yen, G.-S. Liou, Solution-processabletriarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012, 3, 255–264. (i) S.-H. Hsiao, H.-M. Wang, P.-C. Chang, Y.-R. Kung, T.-M. Lee, Synthesis and electrochromic properties of aromatic polyetherimides based on a triphenylamine-dietheramine monomer, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 2925–2938. (j) H.-M. Wang, S.-H. Hsiao, Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units, J. Mater. Chem. C, 2014, 2, 1553–1564. (k) J.-H. Wu, G.-S. Liou, High-performance electrofluorochromic devices based on electrochromism- and photoluminescence-active novel poly(4-cyanotriphenylamine). Adv. Funct. Mater., 2014, 24, 6422–6429. (l) S.-H. Hsiao, S.-J. Yeh, Synthesis and optoelectronic properties of Novel polyamides with 2-naphthyldiphenylamine units, Macromol. Chem. Phys., 2014, 215, 705–715. (m) S.-H. Hsiao, S.-L. Cheng, New electroactive and electrochromic aromatic polyamides with ether-linked bis(triphenylamine) units, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 496–510. (n) S.-H. Hsiao, C.-Y. Teng, Y.-R. Kung, Synthesis and characteriztion of novel electrochromic poly(amide-imide)s with N,N-di(4-methoxyphenyl)-N,N-diphenyl-p-phenylenediamine units, RSC. Adv., 2015, 5, 93591–93606.
12.E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc., 1966, 88, 3498–3503.
13.R. F. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc., 1968, 90, 3925–3930.
14.(a) M.-k. Leung, M.-Y. Chou, Y.-O. Su, C.-L. Chiang, H.-L. Chen, C.-F. Yang, C.-C. Yang, C.-C. Lin, H.-T. Chen, Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization. Org. Lett., 2003, 5, 839–842. (b) J. Natera, L. Otero, L. Sereno, F. Fungo, N. S. Wang, Y.-M. Tsai, T.-Y. Hwu, K.-T. Wong, A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 2007, 40, 4456–4463. (c) C.-C. Chiang, H.-C. Chen, C.-s. Lee, M.-k. Leung, K.-R. Lin, K.-H. Hsieh, Electrochemical deposition of bis(N,N’-diphenylaminoaryl) substituted ferrocenes, and their application as a hole-injection layer on polymeric light-emitting diodes. Chem. Mater., 2008, 20, 540–552. (d) J. Natera, L. Otero, F. D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, K.-T. Wong, Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules, 2009, 42, 626–635. (e) M. I. Mangione, R. A. Spanevello, A. Rumbero, D. Heredia, G. Marzari, L. Fernandez, L. Otero, F. Fungo, Electrogenerated conductive polymers from triphenylamine end-capped dendrimers. Macromolecules, 2013, 46, 4754–4763. (f) S.-H. Hsiao, J.-W. Lin, Facile preparation of electrochromic poly(amine-imide) films from diimide compounds with terminal triphenylamino groups via electrochemical oxidative coupling reactions. Polym. Chem., 2014, 5, 6770−6778.
15.(a) S.-H. Hsiao and Y.-T. Chiu, Electrosynthesis and electrochromic properties of poly(amide-triarylamine)s containing triptycene units. RSC. Adv., 2015, 5, 90941−90951. (b) S.-H. Hsiao and J.-Y. Lin. Electrosynthesis of ambipolar electrochromic polymer films from anthraquinone-triarylamine hybrids. J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 644−655. (c) S.-H. Hsiao, S.-W. Lin, The electrochemical fabrication of electroactive polymer films from diamide- or diimide-cored N-phenylcarbazole dendrons for electrochromic applications. J. Mater. Chem. C, 2016, 4, 1271–1280. (d) S.-H. Hsiao, H.-M. Wang, Facile fabrication of redox-active and electrochromic poly(amide-amine) films through electrochemical oxidative coupling of arylamino groups. J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 2476−2485. (e) S.-H. Hsiao, H.-M. Wang, Electrochemically fabricated electrochromic films from 4-(N-carbazolyl)triphenylamine and its dimethoxy derivatives. RSC Adv., 2016, 6, 43470-43479. (f) S.-H. Hsiao, L.-C. Wu, Fluorescent and electrochromic polymers from 2,8-di(carbazol-9-yl)dibenzothiophene and its S,S-dioxide derivative. Dyes Pigments, 2016, 134, 51–63.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊