|
1.Ea HK, Lioté F. A dvances in understanding calcium-containing crystal disease. Curr Opin Rheumatol. 2009 Mar; 21(2):150-157. 2.Molloy ES, McCarthy GM. Calcium crystal deposition diseases: update on pathogenesis and manifestations. Rheum Dis Clin North Am 2006; 32:383–400. 3.Dieppe PA. Crystal deposition and inflammation. Q J Med 1984; 53:309–316. 4.Schumacher HK, Chcrian PV, Kcginato AJ, et al. Intra-articular apatitc crystal deposition. Ann Rheum Dis 1983; 42(suppl):54-59. 5.Fritz P, Bardin T, Laredo JD, et al. Paradiaphyseal calcific tendinitis with cortical bone erosion. Arthritis Rheum 1994; 37:718–723. 6.McCarty DJ, Halverson PB, Carrera GF, et al. ‘Milwaukee shoulder’: association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum 1981; 24:464–473. 7.Ornetti P, Vernier N, Fortunet C. Milwaukee shoulder syndrome affecting the elbow. Arthritis Rheum. 2013; 65(2):538. 8.Nakase T, Takeuchi E, Sugamoto K, et al. Involvement of multinucleated giant cells synthesizing cathepsin K in calcified tendinitis of the rotator cuff tendons. Rheumatology (Oxford). 2000 Oct; 39(10):1074-1077. 9.Adamopoulos IE, Sabokbar A, Wordsworth BP, et al. Synovial fluid macrophages are capable of osteoclast formation and resorption. J Pathol 2006; 208(1):35-43. 10.Cheung HS. Calcium crystal effects on the cells of the joint: implications for pathogenesis of disease. Curr Opin Rheumatol 2000; 12:223–227. 11.Ea HK, Liote´ F. Calcium pyrophosphate dihydrate and basic calcium phosphate crystal-induced arthropathies: update on pathogenesis, clinical features, and therapy. Curr Rheumatol Rep 2004; 6:221–227. 12.Liote´ F, Ea HK. Recent developments in crystal-induced inflammation pathogenesis and management. Curr Rheumatol Rep 2007; 9:243–250. 13.Ea HK, Uzan B, Rey C, et al. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. Arthritis Res Ther 2005; 7:R915–R926. 14.Ea HK, Monceau V, Camors E, et al. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis 2008; 67:1617–1625. 15.Hamilton JA, McCarthy G, Whitty G. Inflammatory microcrystals induce murine macrophage survival and DNA synthesis. Arthritis Res 2001; 3: 242–246. 16.Bouchard L, de Médicis R, Lussier A, et al. I nflammatory microcrystals alter the functional phenotype of human osteoblast-like cells in vitro: synergism with IL-1 to overexpress cyclooxygenase-2. J Immunol 2002 ; 168 : 5310 –5317. 17.Massey HM, Flanagan AM. Human osteoclasts derive from CD14- positive monocytes. Br J Haematol 1999; 106:167–170. 18.Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289:1504–1508. 19.Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 1998; 95:3597–3602. 20.Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93:165–176. 21.Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life. 2005; 57(6):389-395. 22.Derfus BA, Kurian JB, Butler JJ, et al. The high prevalence of pathologic calcium crystals in pre-operative knees. J Rheumatol 2002; 29(3):570–574. 23.McCarthy GM, Cheung HS. Point: hydroxyapatite crystal deposition is intimately involved in the pathogenesis and progression of human osteoarthritis. Curr Rheumatol Rep 2009; 11:141–147. 24.Fuerst M, Bertrand J, Lammers L, et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 2009; 60:2694–2703. 25.Yavorskyy A, Hernandez-Santana A, McCarthy G, et al. Detection of calcium phophate crystals in the joint fluid of patients with osteoarthritis – analytical approaches and challenges. Analyst 2008; 133:302–318. 26.Dam EB, Loog M, Christiansen C, et al. Identification of progressors in osteoarthritis by combining biochemical and MRI-based markers. Arthritis Res Ther 2009; 11(4):R115. 27.Macmullan PA, McCarthy GM. The meniscus, calcification and osteoarthritis: a pathologic team. Arthritis Res Ther 2010; 12:R116. 28.Derfus B, Kranendonk S, Camacho N, et al. Human Osteoarthritic Cartilage Matrix Vesicles Generate Both Calcium Pyrophosphate Dihydrate and Apatite In Vitro. Calcif Tissue Int 1998; 63: 258– 262. 29.Heger M, Mordon S, Leroy G, et al. Raman microspectrometry of laser-reshaped rabbit auricular cartilage: preliminary study on laser-induced cartilage mineralization. J Biomed Opt 2006; 11(2): 024003. 30.Freemont AJ, Denton J, Chuck A, et al. Diagnostic value of synovial fluid microscopy: a reassessment and rationalisation Ann Rheum Dis 1991; 50: 101–107. 31.Dieppe P, A. Swan. Identification of crystals in synovial fluid. Ann Rheum Dis1999; 58: 261–263. 32.Ivorra J, Rosas J, Pascual E. Most calcium pyrophosphate crystals appear as non-birefringent. Ann Rheum Dis 1999; 58: 582–584. 33.McCarthy G. M. Crystal deposition diseases: out of sight, out of mind. Curr Opin Rheumatol 2005; 17: 312–313. 34.Segal JB, Albert D. Diagnosis of crystal-induced arthritis by synovial fluid examination for crystals: lessons from an imperfect test. Arthritis Care Res 1999 Dec;12(6):376–380. 35.Lumbreras B, Pascual E, Frasquet J, et al. Analysis for crystals in synovial fluid: training of the analysts results in high consistency. Ann Rheum Dis 2005; 64: 612–615. 36.Jaovisidha K, Rosenthal AK. Calcium crystals in osteoarthritis. Curr Opin Rheumatol 2002; 14: 298–302. 37.Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 2000; 5:259–268. 38.Ou KL, Hsu TC, Liu YC, et al. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Anal Chim Acta 2014; 806:188-196. 39.Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci 1999; 96:3540–3545. 40.Liu YC. Evidence of Chemical Effect on Surface-Enhanced Raman Scattering of Polypyrole Films Electrodeposited on Roughened Gold Substrates. Langmuir 2002; 8(1):174-181. 41.Wu YW, Chen SC, Lai WF, et al. Screening of flavonoids for effective osteoclastogenesis suppression. Anal Biochem. 2013;433:48-55. 42.MacMullan P,McMahon G, McCarthy G. Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine 2011; 78:358–363. 43.Cheng X., Haggins DG, York RH, et al. Diagnosis of Crystals Leading to Joint Arthropathies by Raman Spectroscopy: Comparison with Compensated Polarized Imaging, Applied Spectroscopy 2009; 63(4):381-386. 44.Yavorskyy A, Santana AH, McCarthy G, McMahon G. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis– analytical approaches and challenges Analyst 2008; 133: 302-318. 45.Bouchard L, de Medicis R, Lussier A, et al. PE.Inflammatory microcrystals alter the functional phenotype of human osteoblast-like cells in vitro: synergism with IL-1 to overexpress cyclooxygenase-2. J Immunol 2002; 168:5310–5317. 46.Dalbeth N, Smith T, Nicolson B, et al. Enhanced osteoclastogenesis in patients with tophaceous gout: urate crystals promote osteoclast development through interactions with stromal cells. Arthritis Rheum. 2008; 58(6):1854-1865 47.Cheung H, Devine T, Hubbard W. Calcium phosphate particle induction of metalloproteinase and mitogenesis; effect of particle sizes. Osteoarthritis Cartilage 1997; 5:145–151. 48.Prudhommeaux F, Schiltz C, Liote F, et al.: Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum 1996, 39:1319–1326. 49.Terkeltaub R: Pathogensis of inflammatory manifestations caused by crystals. In Gout, Hyperuricemia and Other Crystal- Associated Arthropathies. Edited by Smyth CJ and Holers VM. Marcel Dekker, 1999:1–14. 50.Cheung HS, Story MT, McCarty DJ. Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells. Arthritis Rheum 1984; 27:668–674. 51.Nair D, Misra R, Sallis J, et al. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen activated protein kinase cascade signal transduction pathway. J Biol Chem 1999; 272:18920–18925. 52.McCarthy GM, Augustine JA, Baldwin AS, et al. Molecular mechanism of basic calcium phosphate crystal-induced activation of human fibroblasts. Role of nuclear factor kB, activator protein 1, and protein kinase C. J Biol Chem 1998; 273:35161–35169. 53.Brogley MA, Cruz M, Cheung HS. Basic calcium phosphate crystal induction of collagenase 1 and stromelysin expression is dependent on a p42/44 mitogen-activated protein kinase signal transduction pathway. J Cell Physiol 1999; 180:215–224. 54.Reuben PM, Brogley MA, Sun Y, Cheung HS. Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase C alpha. J Biol Chem 2002; 277:15190 –15198. 55.Wada T, Nakashima T, Hiroshi N, et al. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12:17-25. 56.Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423:337. 57.Grandjean-Laquerriere A, Tabary O, Jacquot J, et al. Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles. Biomaterials 2007; 28:400-404. 58.Liu-Bryan R, Pritzker K, Firestein GS, et al. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal induced nitric oxide generation. J Immunol 2005; 174: 5016-5023. 59.Ea HK, Monceau V, Camors E, et al. Annexin 5 overexpression increasedarticular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis 2008; 67:1617–1625. 60.Maruotti N, Grano M, Colucci S, et al. Osteoclastogenesis and arthritis. Clin Exp Med 2011; 11:137-145. 61.Zhao B, Ivashkiv LB. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther 2011; 13(4):234. 62.Cheung HS. Role of calcium-containing crystals in osteoarthritis. Front Biosci 2005; 10:1336-1340. 63.Cheung HS. Biologic effects of calcium-containing crystals. Curr Opin Rheumatol 2005; 17:336-340. 64.Liu R, O’Connell M, Johnson K, et al. Extracellular signal-regulated kinase 1/extracellular signal-regulated kinase 2 mitogen-activated protein kinase signaling and activation of activator protein 1 and nuclear factor kappaB transcription factors play central roles in interleukin-8 expression stimulated by monosodium urate monohydrate and calcium pyrophosphate crystals in monocytic cells. Arthritis Rheum 2000; 43:1145–1155. 65.Tudan C, Jackson JK, Charlton L, et al. Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol-3-kinase-independent pathways. Biochem J 1998; 331:531–537. 66.Tudan C, Jackson JK, Higo TT, et al. Calcium pyrophosphate dihydrate crystal associated induction of neutrophil activation and repression of TNF-alphainduced apoptosis is mediated by the p38 MAP kinase. Cell Signal 2004; 16:211–221. 67.Liu-Bryan R, Scott P, Sydlaske A, et al. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2005; 52:2936–2946. 68.Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237–241. 69.Ea HK, Uzan B, Rey C, et al. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. Arthritis Res Ther 2005; 7:R915–R926. 70.Ea HK, Monceau V, Camors E, et al. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis 2008; 67:1617–1625. 71.Nadra I, Mason JC, Philippidis P, et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 2005; 96:1248–1256. 72.Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2t signalling to membrane dynamics. Nat Rev Mol Cell Biol 2005; 6:449–461. 73.Molloy ES, McCarthy GM. Calcium crystal deposition diseases: update on pathogenesis and manifestations. Rheum Dis Clin North Am 2006; 32:383–400. 74.Rosenthal AK. Calcium crystal deposition and osteoarthritis. Rheum Dis Clin North Am 2006; 32:401–412. 75.Scutellari PN, Galeotti R, Leprotti S, et al. The crowned dens syndrome: evaluation with CT imaging. Radiol Med 2007; 112:195–207. 76.Fritz P, Bardin T, Laredo JD, et al. Paradiaphyseal calcific tendinitis with cortical bone erosion. Arthritis Rheum 1994; 37:718–723. 77.Dieppe PA. Crystal deposition and inflammation. Q J Med 1984; 53:309–316. 78.McCarty DJ, Halverson PB, Carrera GF, et al. ‘Milwaukee shoulder’: association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum 1981; 24:464–473. 79.Derfus BA, Kurian JB, Butler JJ, et al. The high prevalence of pathologic calcium crystals in preoperative knees. J Rheumatol 2002; 29:570–574. 80.Gibilisco PA, Schumacher HR, Hollander JL, et al. Synovial fluid crystals in osteoarthritis. Arthritis Rheum 1985; 28:511–515. 81.Nalbant S, Martinez JA, Kitumnuaypong T, et al. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 2003; 11:50–54. 82.Sokoloff L, Varma AA. Chondrocalcinosis in surgically resected joints. Arthritis Rheum 1988; 31:750–756. 83.Muehleman C, Li J, Aigner T, et al. Association between crystals and cartilage degeneration in the ankle. J Rheumatol 2008; 35:1108–1117. 84.Rosenthal AK, Mandel N. Identification of crystals in synovial fluids and joint tissues. Curr Rheumatol Rep 2001; 3:11–16. 85.Bertrand J, Fu¨ rst M, Lammers L, et al. Production of calcium crystals in the osteoarthritic knee links osteoarthritis to endochondral ossification. Arthritis Rheum 2008; 58 (Suppl):S152. 86.Smith E, G. Dent G, Chichester W. Modern Raman Spectroscopy: A Practical Approach, ed. 2005, 210 pp. 87.Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 2000;5: 259–268. 88.Buschman HP, Motz JT, Deinum G, et al. Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy. Cardiovascular Pathology 2001; 10(2): 69-82. 89.Penel G, Delfosse C, Descamps M, Leroy G. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone. 2005 May; 36(5):893-901. 90.McGill N, Dieppe PA, Bowden M, et al. Identification of pathological mineral deposits by Raman microscopy. Lancet 1991 Jan 12; 337(8733):77-8. 91.Morris MD, Roessler BJ. Future spectroscopic diagnostics in osteoarthritis. Future Rheumatol 2006; 1: 383–386. 92.Brannan SR, Jerrard DA. Synovial fluid analysis. J Emerg Med. 2006; 30(3):331-339. 93.Termine JD, Eanes ED, Greenfield DJ, et al. Harper RA. Hydrazine-deproteinated bone mineral. Calcif Tissue Re. 1973; 12:73–90. 94.Cunningham T, Uebelthart D, Very J M, et al. Synovial fluid hydroxyapatite crystals: detection thresholds of two methods. Ann Rheum Dis 1989; 48: 829-831. 95.Halverson PB, McCarty DJ. Identification of hydroxyapatite crystals in synovial fluid Arthritis Rheum 1979; 22(4):389-395. 96.McCarty D. Crystals, joints, and consternation. Ann Rheum Dis 1983; 42(3):243–253. 97.Moradi-Bidhendi N, Turner IG. Development of a new technique for the extraction of crystals from synovial fluids. J Mater Sci Mater Med 1995; 6:51–53. 98.Olszta MJ, Cheng X, Jee SS, et al. Gower LB. Bone structure and formation: a new perspective. Mater Sci Eng R 2007; 58:77–116.
|