(54.236.58.220) 您好!臺灣時間:2021/03/08 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:卓瑞樵
研究生(外文):Zhuo Rui Qiao
論文名稱:微/奈米結構之雷射表面改質技術應用於微創電燒器械熱傷害行為之整合研究
論文名稱(外文):Effect of micro/nanostructured surface modification usingfemtosecond laser pulses on minimally invasive electrosurgicaldevices
指導教授:洪景明
指導教授(外文):Hong Jing Ming
口試委員:林明宏黃茂栓
口試委員(外文):Lin Ming HongHuang Mao Shuan
口試日期:2016-01-21
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫療器材產業碩士專班
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:56
中文關鍵詞:電燒器械;奈米結構;雷射技術;熱傷害;沾黏問題
外文關鍵詞:electrosurgical instrumentnanostructured filmthermal damagelaser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目標為探討臨床之熱傷害與手術時之沾黏問題進而研發出之
新式電燒手術器械經過雷射表面處理後之變化,於臨床電燒手術之安
全方面,減緩熱傷害於手術部位週遭組織是重點項目之一,雷射電燒
器械經由光學顯微鏡、掃描式電子顯微鏡與穿透式電子顯微鏡觀測表
面型態並經由X-ray 質譜儀分析元素成分。於動物實驗方面,採用30
隻大鼠作為電燒手術實驗規劃,並分別於手術後0, 3, 7, 14, 28 天後犧
牲動物並觀察組織切片,結果可以發現熱破壞組織與沾黏情形明顯降
低於雷射表面處理之電燒器械,並且溫度之隨著鍍膜厚度之增加而明
顯有下降之趨勢,並且由紅外線溫度偵測儀發現雷射表面處理之電燒
器械溫度比未經過處理之電燒器械略低,並且也造成較小之傷口,呈
上所述,奈米雷射表面處理後之電燒器械可防止過高之熱傷害以及減
緩臨床組織切割時沾黏之問題。
The purpose of the present study was to examine the thermal damage and sticking
problem in the tissue after the use of a minimally invasive electrosurgical device
with a nanostructured surface treatment using femtosecond laser pulses (FLP)
technique. To safely utilize an electrosurgical device in clinical surgery, it is
important to decrease the thermal damage to surrounding tissues. The surface
characteristics and morphology of FLP layer was evaluated using optical microscopy,
scanning electron microscopy, transmission electron microscopy, and element
analysis was investigated using energy-dispersive X-ray spectroscopy, grazing
incidence X-Ray diffraction and X-ray photoelectron spectroscopy. In the animal
model, monopolar electrosurgical devices were used to create lesions in the leg of
thirty adult rats. Animals were sacrificed for investigations at 0, 3, 7, 14 and 28 days
postoperatively. Results indicated that the thermal damage and sticking situation
were reduced significantly when a minimally invasive electrosurgical instrument
with the FLP layer was used. Temperatures decreased while the film thickness
increasing. Thermographic data revealed that surgical temperatures in an animal
model were significantly lower in the FLP electrosurgical device compared to the
untreated one. Furthermore, the FLP device created a relatively small area of thermal
damage. As described above, the biomedical nanostructured layer reduced the thermal damage and promoted the anti-sticking property with the use of a minimally
invasive electrosurgical device.
中文摘要.....................................................................................................................Ⅰ
Abstract......................................................................................................... .............Ⅱ
Contents..................................................................................................................... Ⅲ

Figure captions............................................................................................................ V
Chapter 1 Introduction ................................................................................................... 7
Chapter 2 Literature Review .......................................................................................... 9
Chapter 3 Materials and Methods ................................................................................ 11
Chapter 4 Results and Discussion ................................................................................ 14
Chapter 5 Conclusion ................................................................................................... 20
References .................................................................................................................... 21
[1] Qi L, Nishii K, Namba Y. Regular subwavelength surface structures induced by femtosecond laser
pulses on stainless steel. Opt Lett 2009;34:1846-8.
[2] Wu B, Zhou M, Li J, Ye X, Li G, Cai L. Superhydrophobic surfaces fabricated by microstructuring of
stainless steel using a femtosecond laser. Applied Surface Science 2009;256:61-6.
[3] Fine R, Vose J. Traditional electrosurgery and a low thermal injury dissection device yield different
outcomes following bilateral skin-sparing mastectomy: a case report. Journal of Medical Case Reports
2011;5:1-5.
[4] Zhang G-Y, Zhou X-F, Zhou X-Y, Wen Q-Y, You B-G, Liu Y, et al. Effect of alginate-chitosan sustained
release microcapsules for transhepatic arterial embolization in VX2 rabbit liver cancer model. Journal
of Biomedical Materials Research Part A 2013;101:3192-200.
[5] Koch C, Friedrich T, Metternich F, Tannapfel A, Reimann H-P, Eichfeld U. Determination of
temperature elevation in tissue during the application of the harmonic scalpel. Ultrasound in Medicine
& Biology 2003;29:301-9.
[6] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear
deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence
on recording region and brain state. Physical Review E 2001;64:061907.
[7] Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-d intraoperative
MR images of the brain using a finite-element biomechanical model. Medical Imaging, IEEE
Transactions on 2001;20:1384-97.
[8] Miller K. Constitutive model of brain tissue suitable for finite element analysis of surgical
procedures. Journal of Biomechanics 1999;32:531-7.
[9] Cheng H-Y, Hsiao W-T, Lin L-H, Hsu Y-J, Sinrang AW, Ou K-L. Effects of antibacterial nanostructured
composite films on vascular stents: Hemodynamic behaviors, microstructural characteristics, and
biomechanical properties. Journal of Biomedical Materials Research Part A 2014:n/a-n/a.
[10] Cheng H-Y, Chu K-T, Shen F-C, Pan Y-N, Chou H-H, Ou K-L. Stress effect on bone remodeling and
osseointegration on dental implant with novel nano/microporous surface functionalization. Journal of
Biomedical Materials Research Part A 2013;101A:1158-64.
[11] Cheng HY, Peng PW, Lin YJ, Chang ST, Pan YN, Lee SC, et al. Stress analysis during jaw movement
based on vivo computed tomography images from patients with temporomandibular disorders.
International Journal of Oral and Maxillofacial Surgery 2013;42:386-92.
[12] Chu K-T, Cheng H-Y, Pan Y-N, Chen S-Y, Ou K-L. Enhancement of biomechanical behavior on
osseointegration of implant with SLAffinity. Journal of Biomedical Materials Research Part A
2013;101A:1195-200.
[13] Lin CY, Cheng CW, Ou KL. Micro/Nano-Structuring of Medical Stainless Steel using Femtosecond
Laser Pulses. Physics Procedia 2012;39:661-8.
[14] Nayak BK, Gupta MC. Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Optics and Lasers in Engineering 2010;48:940-9.
[15] Gnanamuthu DS. Laser Surface Treatment. OPTICE 1980;19:195783--.
[16] Gremaud M, Carrard M, Kurz W. The microstructure of rapidly solidified Al Fe alloys subjected
to laser surface treatment. Acta Metallurgica et Materialia 1990;38:2587-99.
[17] Habermann W, Müller W. Tissue penetration of bipolar electrosurgical currents: Joule overheating
beyond the surface layer. Head & Neck 2013;35:535-40.
[18] dos Santos I, Haemmerich D, Pinheiro C, da Rocha A. Effect of variable heat transfer coefficient on
tissue temperature next to a large vessel during radiofrequency tumor ablation. BioMedical
Engineering OnLine 2008;7:21.
[19] Savvides N, Bell TJ. Hardness and elastic modulus of diamond and diamond-like carbon films. Thin
Solid Films 1993;228:289-92.
[20] Ledbetter HM, Frederick NV, Austin MW. Elastic‐constant variability in
stainless‐steel 304. Journal of Applied Physics 1980;51:305-9.
[21] Savvides N, Bell TJ. Microhardness and Young’s modulus of diamond and diamondlike carbon
films. Journal of Applied Physics 1992;72:2791-6.
[22] Scheibe HJ, Schultrich B. DLC film deposition by Laser-Arc and study of properties. Thin Solid Films
1994;246:92-102.
[23] Elliott-Lewis EW, Mason AM, Barrow DL. Evaluation of a new bipolar coagulation forceps in a
thermal damage assessment. Neurosurgery 2009;65:1182-7; discussion 7.
[24] Hensman C, Baty D, Willis RG, Cuschieri A. Chemical composition of smoke produced by
high-frequency electrosurgery in a closed gaseous environment. Surg Endosc 1998;12:1017-9.
[25] Munro MG, Weisberg M, Rubinstein E. Gas and Air Embolization during Hysteroscopic
Electrosurgical Vaporization: Comparison of Gas Generation Using Bipolar and Monopolar Electrodes
in an Experimental Model. The Journal of the American Association of Gynecologic Laparoscopists
2001;8:488-94.
[26] Peter H, Nicolas M, Manfred R, Francis L. Structural and mechanical properties of chromium
nitride, molybdenum nitride, and tungsten nitride thin films. Journal of Physics D: Applied Physics
2003;36:1023.
[27] Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of
the effect of different bone quality on stress distribution in an implant-supported crown. The Journal
of Prosthetic Dentistry 2005;93:227-34.
[28] Tanaka E, Tanne K, Sakuda M. A three-dimensional finite element model of the mandible
including the TMJ and its application to stress analysis in the TMJ during clenching. Medical
Engineering & Physics 1994;16:316-22.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔