一、 網頁參考文獻
[1] Digitimes。智慧型手機中感測元件。線上檢索日期:2016年6月16號。網址:http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?id=0000303127_NXY2VSZR1SBT5X81BOLNV
[2] Nike Plus Running。線上檢索日期:2016年6月16號。網址:
http://www.nike.com/us/en_us/c/running/nikeplus/gps-app
[3] Runkeeper。線上檢索日期:2016年6月16號。網址:https://runkeeper.com/
[4] 馬拉松世界。線上檢索日期:2016年6月16號。網址:http://www.marathonsworld.com/
[5] Endomondo。線上檢索日期:2016年6月16號。網址:https://www.endomondo.com/
[6] mySports。線上檢索日期:2016年6月16號。網址:https://www.mysports.net.tw/
[7] Runtastic。線上檢索日期:2016年6月16號。網址:https://www.runtastic.com/
[8] World Martial Arts Academy。THE HISTORY OF TAEKWONDO。線上檢索日期:2016年6月16號。網址: http://www.worldtaekwondo.com/history.htm
[9] 百度經驗。運動跆拳道實戰基本腿法。線上檢索日期:2016年6月16號。網址:http://jingyan.baidu.com/article/9c69d48f679e4913c9024e8a.html
[10] Asus。ZenWatch。線上檢索日期:2016年6月16號。網址:https://www.asus.com/tw/ZenWatch/ZenWatch_WI500Q/specifications/
[11] Intelligent Control Techniques in Mechatronics - Genetic algorithm。線上檢索日期:2016年3月11號。網址:http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/Eng/3.Genetic%20algorithm/_05.html
[12] Android Developers。SensorEvent。線上檢索日期:2016年6月16號。網址:http://developer.android.com/reference/android/hardware/SensorEvent.html
二、 中文參考文獻
[13] 相子元,石又,何金山(2012)。感測科技於運動健康科學之應用,中華民國體育學報,第45卷第1期。[14] 林哲英,黃志鵬(2015)。利用模糊推論結合基因演算法應用於LEGO Mindstorms NXT兩輪自體平衡機器人,中華民國,臺北,臺北市立大學資訊科學系碩士班碩士論文。[15] 黃瀞萱,洪瑞鍾(2015)。支援向量迴歸結合真實波動分類預測股票指數,中華民國,臺北,臺北市立大學資訊科學系在職進修碩士班碩士論文。三、 英文參考文獻
[16] Varkey, J. P., Pompili, D., & Walls, T. A. (2012). Human motion recognition using a wireless sensor-based wearable system. Personal and Ubiquitous Computing, Vol. 16, pp. 897-910.
[17] Martin, T., Jovanov, E., & Raskovic, D. (2000, October). Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. In Wearable Computers, The Fourth International Symposium on. IEEE, pp 43-49.
[18] Jiang, P., Winkley, J., Zhao, C., Munnoch, R., Min, G., & Yang, L. T. (2014). An intelligent information forwarder for healthcare big data systems with distributed wearable sensors, IEEE Systems Journal, pp. 1-9.
[19] DeVaul, R. W., & Dunn, S. (2001). Real-time motion classification for wearable computing applications. 2001 Project Paper.
[20] Sun, Z., Mao, X., Tian, W., & Zhang, X. (2008). Activity classification and dead reckoning for pedestrian navigation with wearable sensors. Measurement science and technology, Vol. 20, pp.1-10.
[21] Cho, Y., Nam, Y., Choi, Y. J., & Cho, W. D. (2008, June). SmartBuckle: human activity recognition using a 3-axis accelerometer and a wearable camera. In Proceedings of the 2nd International Workshop on Systems and Networking Support for Health Care and Assisted Living Environments ACM, No. 7, pp.1-3.
[22] Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann press, San Mateo, CA.
[23] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, Vol. 20, pp. 273-297.
[24] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B. Liu, P.S. Yu, Z.H. Zhou, M. Steinbach, D.J. Hand, D. Steinberg. (2008). Top 10 algorithms in data mining. Knowledge and information systems, Vol. 14, pp. 1-37.
[25] Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge university press, Cambridge, UK.
[26] Foody, G. M., & Mathur, A. (2004). Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment, Vol. 93, pp 107-117.
[27] Bahlmann, C., Haasdonk, B., & Burkhardt, H. (2002). Online handwriting recognition with support vector machines-a kernel approach. In Frontiers in handwriting recognition, 2002. proceedings. eighth international workshop on IEEE, pp. 49-54.
[28] Karchin, R., Karplus, K., & Haussler, D. (2002). Classifying G-protein coupled receptors with support vector machines. Bioinformatics, Vol. 18, pp 147-159.
[29] Bagheri-Khaligh, A., Raziperchikolaei, R., & Moghaddam, M. E. (2012, April). A new method for shot classification in soccer sports video based on SVM classifier. In Image Analysis and Interpretation (SSIAI), 2012 IEEE Southwest Symposium on IEEE, pp. 109-112.
[30] Wang, W. F., Yang, C. Y., & Guo, J. T. (2015). A Sport Recognition Method with Utilizing Less Motion Sensors. In Genetic and Evolutionary Computing. Springer International Publishing, pp. 155-167.
[31] Rui, L., Honglei, W., Qingxin, Z., Shujiao, L., Hongyao, D. (2016). A Fast Detection and Recognition Algorithm for Pedestrian at Night Based on Entropy Weight Fast Support Vector Machine. International Journal of Security and Its Applications, Vol. 10, pp. 243-252.
[32] Dash, M., Liu, H. (1997). Feature selection for classification. Intelligent data analysis, Vol. 1, pp. 131-156.
[33] Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining. Springer Science & Business Media, Berlin, DE.
[34] Li, X., & Yin, M. (2013). Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE transactions on nanobioscience, Vol. 12, pp. 343-353.
[35] Xue, B., Zhang, M., & Browne, W. N. (2013). Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE transactions on cybernetics, Vol. 43, pp. 1656-1671.
[36] Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, Vol. 40, pp. 16-28.
[37] Eesa, A. S., Orman, Z., & Brifcani, A. M. A. (2015). A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Systems with Applications, Vol. 42, pp. 2670-2679.
[38] Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, Ann Arbor, MI.
[39] Maimon, O. Z., & Braha, D. (1998). A genetic algorithm approach to scheduling PCBs on a single machine. International Journal of Production Research, Vol. 36, pp. 761-784.
[40] George, A., Rajakumar, B. R., & Binu, D. (2012, August). Genetic algorithm based airlines booking terminal open/close decision system. In proceedings of the International Conference on Advances in Computing, Communications and Informatics. ACM, pp. 174-179.
[41] Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. John Wiley & Sons, Hoboken, NJ.
[42] Huang, C. L., & Wang, C. J. (2006). A GA-based feature selection and parameters optimizationfor support vector machines. Expert Systems with applications, Vol. 31, pp. 231-240.
[43] Zhao, M., Fu, C., Ji, L., Tang, K., & Zhou, M. (2011). Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications, Vol. 38 , pp. 5197-5204.
[44] Tsai, C. F., Eberle, W., Chu, C. Y. (2013). Genetic algorithms in feature and instance selection. Knowledge-Based Systems, Vol. 39, pp. 240-247.
[45] De Stefano, C., Fontanella, F., Marrocco, C., Di Freca, A. S. (2014). A GA-based feature selection approach with an application to handwritten character recognition. Pattern Recognition Letters, Vol. 35, pp. 130-141.
[46] Welikala, R. A., Fraz, M. M., Dehmeshki, J., Hoppe, A., Tah, V., Mann, Barman, S. A. (2015). Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Computerized Medical Imaging and Graphics, Vol. 43, pp. 64-77.
[47] Ahmad, F., Isa, N. A. M., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Analysis and Applications, Vol. 18, pp. 861-870.
[48] Kang, W. S., & Lee, K. M. (1999). A Modern History of Taekwondo. Pogyŏng Munhwasa, Seoul, KR.
[49] Gillis, A. (2008). A killing art: The untold history of Tae Kwon Do. ECW press, Toronto, CA.
[50] Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing letters, Vol. 9, pp. 293-300.
[51] Kuhn, H. W., Tucker, A. W. (1951). Nonlinear programming: Proceedings of 2nd Berkeley Symposium. University of California Press, Oakland, US, pp. 481-492.
[52] Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology , Vol. 2, pp. 27.