(3.238.249.17) 您好!臺灣時間:2021/04/12 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高敏華
研究生(外文):Min-Hua Kao
論文名稱:大麻素受體對於齒狀迴顆粒細胞抑制性調控之影響
論文名稱(外文):Cannabinoid receptor-mediated inhibitory control of dentate granule cells
指導教授:連正章
指導教授(外文):Cheng-Chang Lien
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:68
中文關鍵詞:海馬迴齒狀迴顆粒細胞大麻素受體抑制性神經細胞
外文關鍵詞:hippocampusdentate gyrusgranule cellcannabinoid type 1 receptorGABAergic interneuron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
海馬迴為學習與記憶功能重要的核區。在海馬迴中的齒狀迴結構是負責處理訊息由大腦皮質區傳遞至海馬迴的第一站。在齒狀迴中主要細胞群「顆粒細胞」受到來自不同種類的γ-胺基丁酸抑制性神經細胞嚴密地調控,而此抑制性調控對於大腦辨識相似的事件、物品之功能扮演非常重要的角色。然而,這些不同種類的γ-胺基丁酸抑制性神經細胞在被內嗅皮質層傳遞至齒狀迴之穿緣通路活化時,如何調控顆粒細胞仍不清楚。我們發現當刺激穿緣通路時顆粒細胞的活性受到極為強烈的抑制,當阻斷γ-胺基丁酸抑制性神經傳導物質後,顆粒細胞的活化閾值降低,相較於阻斷γ-胺基丁酸抑制性神經傳導物質前,可增加將近三倍大的顆粒細胞群尖峰電位。在齒狀迴中,其中一種γ-胺基丁酸抑制性神經細胞會表現大麻素受體,藉由大麻素受體之促效劑活化大麻素受體會減少此類γ-胺基丁酸抑制性神經細胞的抑制性神經傳導。相反地,我們發現給予大麻素受體之促效劑會增加顆粒細胞所接受到之抑制性神經傳導及減少顆粒細胞之群尖峰電位,並進一步證明此現象是透過γ-胺基丁酸抑制性神經傳導物質所導致。因此,我們推論大麻素受體之促效劑可能是透過降低對於抑制性神經細胞的抑制,促使抑制性神經細胞解除抑制進而增加對於顆粒狀細胞之抑制性神經傳導。除此之外,我們也發現大麻素受體之促效劑會增強籃狀細胞之活性,但籃狀細胞之活性增加並不是造成顆粒細胞群尖峰電位降低的主要原因。
The hippocampus plays an important role in learning and memory. The dentate gyrus (DG) serves as a primary gateway to the hippocampus, filtering information from the cortex and sending output to other hippocampal areas. The largest neural population in the DG, granule cells (GCs), are under tight control by various types of GABAergic interneurons (INs) and the inhibitory control is crucial for sparse coding and pattern separation. However, how these different types of INs regulate the activity of GCs in response to cortical inputs remains unclear. We found that GCs receive remarkably strong inhibition. The threshold of GCs for spiking decreases and the GC population spikes (pSpikes) increase almost three-fold after blocking GABAA receptors. In the DG, cannabinoid type 1 receptors (CB1Rs) are expressed on some of the GABAergic INs. The CB1R activation by CB1R agonist WIN 55,212-2 reduces GABAergic transmission of the CB1R-expressing INs. In contrast, we found that WIN 55,212-2 enhances the inhibitory currents GC received and decreases the GC pSpikes through GABAergic transmission. These results suggest a CB1R-mediated disinhibitory microcircuits in the DG. Furthermore, we also observed that WIN 55,212-2 increases the activity of basket cells (BCs). However, the enhancement of BC activity does not contribute to the WIN 55,212-2-mediated suppression of GC pSpikes.
論文電子檔著作權授權書 i
論文審定同意書 ii
誌謝 iii
中文摘要 iv
Abstract v
Contents vi
Abbreviations viii
Introduction 1
The hippocampus 1
The dentate gyrus 2
Interneurons in the DG 3
Endocannabinoid receptor-expressing INs in the DG 4
Inhibitory circuits for the signal processing in the DG 6
The aims 7
Materials and Methods 8
Animals 8
Virus and stereotaxic injection 8
Electrophysiology 10
Calibration of input strength for GC activation 11
Threshold and activation curves 12
Chemicals and drugs 13
Biocytin filling and post-hoc morphological reconstruction 14
Data analysis and statistics 15
Results 17
GC activity is tightly controlled by GABAergic inhibition 17
The CB1R agonist WIN 55,212-2 reduces GC pSpikes by modulating GABAergic transmission 19
The CB1R agonist WIN 55,212-2 has no effect on PP transmission and GC excitability 22
The CB1R agonist WIN 55,212-2 increases GABAergic transmission onto GCs 24
The CB1R agonist WIN 55,212-2 increases the excitability of basket cells 25
PV+ INs did not participate in WIN 55,212-2-mediated suppression of GC pSpikes 28
Discussion 31
Summary 31
Disinhibitory microcircuits in the DG 31
Possible mechanisms for WIN 55,212-2-induced suppression of GC pSpikes 33
CB1R-dependent effects by WIN 55,212-2 application 35
Endocannabinoid signaling and behavior 36
Future work 37
Figures 39
Figure 1. Calibration of input strength for GC activation 39
Figure 2. Blockade of GABAA conductance reduces GC spiking threshold 41
Figure 3. GABAA conductance regulates the GC input-output transformation 43
Figure 4. WIN 55,212-2 effect on GC pSpikes 45
Figure 5. CB1R-mediated effect on GC pSpike series 46
Figure 6. WIN 55,212-2 has no effect on excitatory transmission at PP-GC synapses 48
Figure 7. WIN 55,212-2 has no effect on intrinsic properties of GCs 50
Figure 8. WIN 55,212-2 increases I/E ratio at PP-GC synapses 51
Figure 9. WIN 55,212-2 increases spiking probability of BCs 52
Figure 10. Morphological reconstructions of recorded BCs 55
Figure 11. eNpHR-eYFP expression in the PV+ cells 56
Figure 12. The activity of PV+ INs did not contribute to WIN 55,212-2-mediated suppression of GC pSpikes 58
References 60

Acsády L, Káli S (2007) Models, structure, function: the transformation of cortical signals in the dentate gyrus. Prog Brain Res 163:577–99.
Allen K, Monyer H (2015) Interneuron control of hippocampal oscillations. Curr Opin Neurobiol 31:81–7.
Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22.
Andersen P, Morris R, Amaral D, Bliss T, and O’Keefe J (2007) The Hippocampus Book. Oxford University Press.
Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70(4):589–96.
Bartos M, Elgueta C (2012) Functional characteristics of parvalbumin- and cholecystokinin-expressing basket cells. J Physiol 590:669–81.
Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431(7006):312–6.
Behr J, Lyson KJ, Mody I (1998) Enhanced propagation of epileptiform activity through the kindled dentate gyrus. J Neurophysiol 79:1726–1732.
Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14(12):1347–56.
Bowles NP, Hill MN, Bhagat SM, Karatsoreos IN, Hillard CJ, McEwen BS (2012) Chronic, noninvasive glucocorticoid administration suppresses limbic endocannabinoid signaling in mice. Neuroscience 204:83–9.
Brown JA, Horváth S, Garbett KA, Schmidt MJ, Everheart M, Gellért L, Ebert P, Mirnics K (2014) The role of cannabinoid 1 receptor expressing interneurons in behavior. Neurobiol Dis 63:210–21.
Brown SP, Brenowitz SD, Regehr WG (2003) Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 6:1048–1057.
Buhl EH, Cobb SR, Halasy K, Somogyi P (1995) Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur J Neurosci 7(9):1989–2004.
Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–9.
Cajal SR (1893) Estructura del asta de Ammon. Anal Soc Esp Hist Nat (Madrid) 22:53–114.
Caputi A, Melzer S, Michael M, Monyer H (2013) The long and short of GABAergic neurons. Curr Opin Neurobiol 23(2):179–86.
Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76(1):70–81.
Chancey JH, Poulsen DJ, Wadiche JI, Overstreet-Wadiche L (2014) Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci 34(6):2349–54.
Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK, Worley PF, McNaughton BL, Barnes CA (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15:579–586.
Chersi F, Burgess N (2015) The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions. Neuron 88(1):64–77.
Chiu CQ, Castillo PE (2008) Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus. Neuropharmacology 54(1):68–78.
Colombo M, Broadbent N (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 24(4):465–484.
Cope DW, Maccaferri G, Márton LF, Roberts JDB, Cobden PM, Somogyi P (2002) Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience 109: 63–80.
Coulter DA, Carlson GC (2007) Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog Brain Res 163:235–243.
Dieni CV, Nietz AK, Panichi R, Wadiche JI, Wadiche LO (2013) Distinct determinants of sparse activation during granule cell maturation. J Neurosci 33:19131–19142.

Egertová M, Elphick MR (2000) Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 422(2):159–71.
Ewell LA, Jones MV (2010) Frequency-tuned distribution of inhibition in the dentate gyrus. J Neurosci 30:12597–12607.
Fortin DA, Levine ES (2007) Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex 17(1):163–74.
Halasy K, Somogyi P (1993) Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:411–429.
Hájos N, Acsady L, Freund TF (1996) Target selectivity and neurochemical characteristics of VIP-immunoreactive interneurons in the rat dentate gyrus. Eur J Neurosci 8(7):1415–31.
Hájos N, Freund TF (2002) Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers. Neuropharmacology 43(4):503–10.
Häring M, Guggenhuber S, Lutz B (2012) Neuronal populations mediating the effects of endocannabinoids on stress and emotionality. Neuroscience 204:145–58.
Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J Neurosci 27(5):1211–9.
Heifets BD, Castillo PE (2009) Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 71, 283–306.
Hill EL, Gallopin T, Férézou I, Cauli B, Rossier J, Schweitzer P, Lambolez B (2007) Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons. J Neurophysiol 97(4):2580–9.
Hofmann ME, Bhatia C, Frazier CJ (2011) Cannabinoid receptor agonists potentiate action potential-independent release of GABA in the dentate gyrus through a CB1 receptor-independent mechanism. J Physiol 589(15):3801–21.
Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I., Jonas P, Bartos M (2014) Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24:189–203.
Hsu TT, Lee CT, Tai MH, Lien CC (2015) Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb Cortex pii: bhv127.
Hu W, Zhang M, Czéh B, Zhang W, Flügge G (2011) Chronic restraint stress impairs endocannabinoid mediated suppression of GABAergic signaling in the hippocampus of adult male rats. Brain Res Bull 85:374–379.
Jang HJ, Park K, Lee J, Kim H, Han KH, Kwag J (2015) GABAA receptor-mediated feedforward and feedback inhibition differentially modulate the gain and the neural code transformation in hippocampal CA1 pyramidal cells. Neuropharmacology 99:177–86.
Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–80.
Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19(11):4544–58.
Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–7.
Knierim JJ (2015) The hippocampus. Curr Biol 25(23):R1116–21.
Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528.
Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16(11):1662–70.
Lee SH, Földy C, Soltesz I (2010) Distinct endocannabinoid control of GABA release at perisomatic and dendritic synapses in the hippocampus. J Neurosci 30(23):7993–8000.
Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Lüthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–5.
Letzkus JJ, Wolff SB, Lüthi A (2015) Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88(2):264–76.
Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966.
Liu YC, Cheng JK, Lien CC (2014) Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 34(4):1344–57.
Litvin Y, Phan A, Hill MN, Pfaff DW, McEwen BS (2013) CB1 receptor signaling regulates social anxiety and memory. Genes Brain Behav 12(5):479–89.
Malykhin NV, Coupland NJ (2015) Hippocampal neuroplasticity in major depressive disorder. Neuroscience 309:200–13.
Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–28.
Marinelli S, Pacioni S, Bisogno T, Di Marzo V, Prince DA, Huguenard JR, Bacci A (2008) The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J Neurosci 28(50):13532–41.
Marinelli S, Pacioni S, Cannich A, Marsicano G, Bacci A (2009) Self-modulation of neocortical pyramidal neurons by endocannabinoids. Nat Neurosci 12(12):1488–90.
Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225.
Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutiérrez SO, van der Stelt M, López-Rodriguez ML, Casanova E, Schütz G, Zieglgänsberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–8.
Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418(6897):530–4.
Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol (168):299–325.
McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2(1):11–23.
Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16(4):815–23.
Miyoshi G1, Hjerling-Leffler J, Karayannis T, Sousa VH, Butt SJ, Battiste J, Johnson JE, Machold RP, Fishell G (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30(5):1582–94.
Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein JL, Goebbels S, Nave KA, During M, Klugmann M, Wölfel B, Dodt HU, Zieglgänsberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51(4):455–66.
Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain's spatial representation system. Annu Rev Neurosci 31:69–89.
Nitz D, McNaughton B (2004) Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J Neurophysiol 91:863–872.
Nunzi MG, Gorio A, Milan F, Freund TF, Somogyi P, Smith AD (1985) Cholecystokinin-immunoreactive cells form symmetrical synaptic contacts with pyramidal and nonpyramidal neurons in the hippocampus. J Comp Neurol 237(4):485–505.
Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87(5):2624–2628.
Pernía-Andrade AJ, Jonas P (2014) Theta-gamma-modulated synaptic currents in hippocampal granule cells in vivo define a mechanism for network oscillations. Neuron 81(1):140–52.
Nyíri G, Cserép C, Szabadits E, Mackie K, Freund TF (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136(3):811–22.
O'Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map. Oxford University Press.
Pawelzik H, Hughes DI, Thomson AM (2002) Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin- positive interneurones in CA1 of the adult rat hippocampus. J Comp Neurol 443:346–367.
Patel S, Kingsley PJ, Mackie K, Marnett LJ, Winder DG (2009) Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology 34:2699–2709.
Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16(8):1068–76.
Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503(7477):521–4.
Pouille F, Marin-Burgin A, Adesnik H, Atallah BV, Scanziani M (2001) Input normalization by global feedforward inhibition expands cortical dynamic range. Nat Neurosci 12(12):1577–85.
Pouille F, Scanziani M (2001) Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293:1159–1163.
Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the hippocampus. Nature 429:717–723.
Pouille F, Marin-Burgin A, Adesnik H, Atallah BV, Scanziani M (2009) Input normalization by global feedforward inhibition expands cortical dynamic range. Nat Neurosci 12(12):1577–85.
Reich CG, Taylor ME, McCarthy MM (2009) Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res 203:264–269.
Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsáki G (2012) Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 15(5):769–75.
Rudy B, Fishell G, Lee S, Hjerling-Leffler J. (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61.
Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M (2014) Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 34(24):8197–209.
Scharfman HE, Myers CE (2012) Hilar mossy cells of the dentate gyrus: a historical perspective. Front Neural Circuits 6:106.
Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441.
Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21.
Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5(6):745–56.
Salinas E, Thier P (2000) Gain modulation: a major computational principal of the central nervous system. Neuron 27(1):15–21.
Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702.
Somogyi P, Hodgson AJ, Smith AD, Nunzi MG, Gorio A, Wu JY (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material. J Neurosci 4(10):2590–603.
Stell BM, Mody I (2002) Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci 22(10):RC223.
Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15(10):655–69.
Takahashi KA, Castillo PE (2006) The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus. Neuroscience 139(3):795–802.
Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16(6):317–31.
Treves A, Tashiro A, Witter MP, Moser EI (2008) What is the mammalian dentate gyrus good for? Neuroscience 154:1155–1172.
Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83(2):393–411.
Tsou K, Mackie K, Sañudo-Peña MC, Walker JM (1999) Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 93(3):969–75.
Tyan L, Chamberland S, Magnin E, Camiré O, Francavilla R, David LS, Deisseroth K, Topolnik L (2014) Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry. J Neurosci 34(13):4534–47.
Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH (1998) Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 506:755–73.
Viveros MP, Marco EM, Llorente R, López-Gallardo M (2007) Endocannabinoid system and synaptic plasticity: implications for emotional responses. Neural Plast 2007:52908.
Wager-Miller J, Westenbroek R, Mackie K (2002) Dimerization of G protein-coupled receptors: CB1 cannabinoid receptors as an example. Chem Phys Lipids 121(1-2):83–9.
Walker GA (2002) Common statistical methods for clinical research with SAS examples, Ed 2. SAS Institute.
Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31:453–462.
Xu JY, Chen R, Zhang J, Chen C (2010) Endocannabinoids differentially modulate synaptic plasticity in rat hippocampal CA1 pyramidal neurons. PLoS One 5(4):e10306.
Yu EP, Dengler CG, Frausto SF, Putt ME, Yue C, Takano H, Coulter DA (2013) Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus. J Neurosci 33(7):2947–60.
Yu J, Swietek B, Proddutur A, Santhakumar V (2015) Dentate total molecular layer interneurons mediate cannabinoid-sensitive inhibition. Hippocampus 25(8):884–9.
Zhang CQ, Wu HJ, Wang SY, Yin S, Lu XJ, Miao Y, Wang XH, Yang XL, Wang Z (2013) Suppression of outward K⁺ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors. Neuroscience 253:183–93.
Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 96(10):5780–5.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔