(3.236.100.6) 您好!臺灣時間:2021/04/24 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳相余
研究生(外文):Hsiang-Yu Wu
論文名稱:自然情景改變獼猴初級視覺皮質神經元的受域方向
論文名稱(外文):Natural Scene Statistics Alter the Receptive Field Orientation in Macaque Primary Visual Cortex
指導教授:吳仕煒葉俊毅葉俊毅引用關係
指導教授(外文):Shih-Wei WuChun-I Yeh
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:29
中文關鍵詞:初級視覺皮質自然情景受域
外文關鍵詞:primary visual cortexnatural scenereceptive field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
視覺神經科學的一個重要目標是要了解大腦的初級視覺皮質(Visual cortex, V1)如何編碼具有複雜空間特性的自然情景。但是初級視覺皮質大部分都是以人造刺激研究的,因為人造刺激的特性簡單並且容易被定性的。有些研究同時使用人造和自然刺激測量初級視覺皮質的受域(receptive field),但是由這兩種刺激所測量的初級視覺皮質受域仍然缺乏系統性的比較。在這篇研究中,我們比較由人造刺激和自然刺激所測量的獼猴初級視覺皮質受域的差異。在這個自然影片中,水平圖案對於垂直圖案的比例較高,因此我們也將影片轉90度來研究方向(orientation)的偏差如何可能對於初級視覺皮質受域的影響。以白雜訊測繪的受域是以反向相關性(reverse correlation)做計算,以自然刺激測繪的受域則以正規化的擬似逆推法做反向相關性(regularized pseudoinverse reverse correlation)計算。比較由原始的和旋轉過的自然刺激所測繪的受域喜好方向後發現排斥反應,由自然刺激所測繪的受域喜好方向(preferred orientation)會由自然刺激的優勢方向偏移。由白雜訊所測繪的受域喜好方向與其所對應的自然刺激所測繪的受域喜好方向平均大於45度。整體來說,這些結果顯示初級視覺皮質神經元的受域喜好方向會被所對應的自然刺激優勢方向排斥移開。這篇研究表示初級視覺皮質神經元的受域喜好方向不是固定的,而是動態的。
A main goal of visual neuroscience is to understand how the brain encodes natural scene which has complex spatial properties. However, primary visual cortex (V1) is studied mostly with artificial stimuli because their properties are simple and well characterized. Some studies had used both artificial and natural stimuli to measure V1 receptive fields, but a systematic comparison between receptive fields measured by these two types of stimuli has not been done. Here, we compare the difference of receptive fields measured by both artificial stimulus and natural stimuli in macaque V1. The ratio of horizontal to vertical patterns is higher in the natural movie, so the movie was also rotated by 90 degrees to study how the orientation bias might affect V1 receptive fields. Receptive fields mapped by white noise were calculated by reverse correlation, and those mapped by natural stimuli were calculated by regularized pseudoinverse reverse correlation. Comparison of the preferred orientations of receptive fields mapped by both original and rotated natural scene show a repulsive effect, the preferred orientations of natural stimulus maps were shifted away from the dominant orientation of the natural stimulus. The mean orientation difference between the white noise maps and the corresponding natural stimulus maps was higher than 45°. Overall, these results show that the preferred orientations of receptive fields of V1 neurons were repulsed away from the dominant orientation of the corresponding natural stimulus. This study indicates the preferred orientations of receptive fields of V1 neuron are not fixed, but dynamic.
Table of Contents

Acknowledgments i
Chinese Abstract iii
English Abstract iv
Table of Contents vi
List of Figures vii
Introduction 1
Material and methods 3
Animal Surgery and Preparation 3
Electrophysiology Recordings and Data Acquisition 4
Visual Stimulation 5
Data analysis 7
Receptive field estimation 7
Regularized pseudoinverse reverse correlation 8
Fourier spectral analysis of receptive fields 10
Results 11
Spatial properties of natural scene is uneven compare to white noise 11
Cell examples of preferred orientation of receptive field mapped by artificial and natural stimuli 12
Preferred orientation difference of white noise maps and natural scene maps 13
Preferred orientation difference of white noise maps and natural scene 90 maps 14
The effect of orientation bias: compare natural scene maps to natural scene 90 maps 15
The effect of orientation bias: compare white noise maps to natural scene maps or natural scene 90 maps 16
Discussion 17
The orientation patterns in the natural stimuli induced repulsive effect 17
The repulsive effect could be adaptation. 17
The repulsive effect was discovered at upper layer of V1 18
The simple/complex properties may play a role in the repulsive effect 18
The repulsive effect could improve V1 model 18
References 20

List of Figures

Figure 1. Receptive field mapped with white noise and natural scene in monkey V1 22
Figure 2. Receptive field mapped by natural stimuli and calculated by regularized pseudoinverse reverse correlation 23
Figure 3. Spatial properties of white noise and natural scene 24
Figure 4. Cell examples of receptive fields mapped with white noise and natural scene 25
Figure 5. The preferred orientation, signal-to-noise ratio, and firing rate of white noise maps and natural scene maps 26
Figure 6. The preferred orientation, signal-to-noise ratio, and firing rate of white noise maps and natural scene 90 maps 27
Figure 7. The preferred orientation, signal-to-noise ratio, and firing rate of natural scene maps and natural scene 90 maps 28
Figure 8. The preferred orientations differences between white noise maps and natural scene maps or natural scene 90 maps 29

Bonhoeffer, T., & Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 353(6343), 429-431.
David, S. V., Vinje, W. E., & Gallant, J. L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons. J Neurosci, 24(31), 6991-7006.
Dragoi, V., Rivadulla, C., & Sur, M. (2001). Foci of orientation plasticity in visual cortex. Nature, 411(6833), 80-86.
Dragoi, V., Sharma, J., Miller, E. K., & Sur, M. (2002). Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nat Neurosci, 5(9), 883-891.
Dragoi, V., Sharma, J., & Sur, M. (2000). Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron, 28(1), 287-298.
Einhauser, W., Kayser, C., Konig, P., & Kording, K. P. (2002). Learning the invariance properties of complex cells from their responses to natural stimuli. Eur J Neurosci, 15(3), 475-486.
Felsen, G., Touryan, J., Han, F., & Dan, Y. (2005). Cortical sensitivity to visual features in natural scenes. PLoS Biol, 3(10), e342.
Gilbert, C. D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol, 268(2), 391-421.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol, 160, 106-154.
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. J Physiol, 195(1), 215-243.
Jones, J. P., & Palmer, L. A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol, 58(6), 1187-1211.
Muller, J. R., Metha, A. B., Krauskopf, J., & Lennie, P. (1999). Rapid adaptation in visual cortex to the structure of images. Science, 285(5432), 1405-1408.
Reid, R. C., Victor, J. D., & Shapley, R. M. (1997). The use of m-sequence in the analysis of visual neurons: Linear receptive field properties. Visual Neuroscience, 14, 1015-1027.
Ringach, D. L., Hawken, M. J., & Shapley, R. M. (2002). Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. J Vis, 2(1), 12-24.
Rust, N. C., & Movshon, J. A. (2005). In praise of artifice. [Review]. Nat Neurosci, 8(12), 1647-1650.
Sharpee, T. O., Sugihara, H., Kurgansky, A. V., Rebrik, S. P., Stryker, M. P., & Miller, K. D. (2006). Adaptive filtering enhances information transmission in visual cortex. Nature, 439(7079), 936-942.
Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D., & Tolhurst, D. J. (2003). The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J Neurosci, 23(11), 4746-4759.
Talebi, V., & Baker, C. L., Jr. (2012). Natural versus synthetic stimuli for estimating receptive field models: a comparison of predictive robustness. J Neurosci, 32(5), 1560-1576.
Yeh, C. I., Xing, D., Williams, P. E., & Shapley, R. M. (2009). Stimulus ensemble and cortical layer determine V1 spatial receptive fields. Proc Natl Acad Sci U S A, 106(34), 14652-14657.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔