(3.237.20.246) 您好!臺灣時間:2021/04/16 07:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邵佾萱
研究生(外文):Yi-Shuan Shao
論文名稱:產前有機磷農藥暴露與出生結果關係研究
論文名稱(外文):Prenatal Exposure to Organophosphate Pesticide and Birth Outcomes
指導教授:陳美蓮陳美蓮引用關係
指導教授(外文):Mei-Lien Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:環境與職業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:83
中文關鍵詞:有機磷農藥產前暴露孕婦新生兒結果
外文關鍵詞:DAPsbirth outcomesorganophosphate pesticidesprenatal
相關次數:
  • 被引用被引用:2
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣位於亞熱帶地區,因溫度、與量及日照等氣候條件,為了減少病蟲害對作物及家庭環境造成影響,因此,農藥及環境用藥使用相當普遍,而其中有機磷農藥 (Organophosphate pesticides; OPs) 因成本低及可有效殺死病蟲等特性,成為使用量最大宗。人類主要暴露途徑為食入、吸入及接觸,例如:食物殘留、飲用水、家庭環境噴藥、落塵等。有機磷農藥被歸類於環境賀爾蒙,具有內分泌干擾作用並危害人體健康。由於孕婦及胎兒為易感性族群且有機磷農藥可透過胎盤影響到胎兒成長,因此,比起一般族群,其環境化學物質暴露更值得重視。目前已有研究發現,產前暴露有機磷農藥與新生兒出生結果有不良影響,但研究結果並不一致。
本研究目的為建立一孕婦世代研究,探討產前有機磷農藥暴露與新生兒出生結果之相關性。方法為收集孕婦妊娠三時期之問卷、尿液及新生兒出生資料,以建立完整的孕婦暴露及新生兒資料,進而評估產前各孕程至生產時有機磷農藥暴露濃度與新生兒健康之相關性,主要分析代謝物質為dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphates (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP),以GC/MS進行分析。
本研究共有201位孕婦參加,完整追蹤三孕期至分娩且為單胞胎孕婦共162位,最終選取具有三期檢體及尿液量足夠者共105位進行分析探討。105位單胞胎孕婦有機磷農藥代謝物幾何平均濃度,經肌酸酐校正後,第一期DMP、 DMTP、 DMDTP、 DEP、 DETP、 DEDTP、 DMs、 DEs 及 DAPs 濃度 (nmol/g creatinine)分別為244.50、 167.75、 48.86、 55.19、 137.03、 33.15、 516.08、 245.17 及 801.9;第二期DMP、 DMTP、 DMDTP、 DEP、 DETP、 DEDTP、 DMs、 DEs 及 DAPs 濃度 (nmol/g creatinine) 分別為253.25、188.42、 55.61、 62.98、 131.74、 37.33、 558.29、 251.86 及 851.10;第三期DMP、 DMTP、 DMDTP、 DEP、 DETP、 DEDTP、 DMs、 DEs 及 DAPs 濃度 (nmol/g creatinine) 分別為265.13、 167.66、 53.90、 65.71、 156.51、 38.17、 569.02、 282.21 及 892.03。以線性迴歸模型分析三期尿液有機磷農藥代謝物濃度與新生兒出生關係,結果發現,孕婦第二期尿液代謝物 (DMDTP、DEP、DEDTP、DMs、DEs) 濃度較高組相對於較低組 (高低組濃度切點分別為: 57.47 nmol/g creatinine、69.90 nmol/g creatinine、39.11 nmol/g creatinine、534.93 nmol/g creatinine、 262.80 nmol/g creatinine),其新生兒體重、身高及胸圍有顯著較低。
研究結果指出,產前有機磷農藥暴露可能影響新生兒體重、身高及胸圍,另外發現懷孕第二期可能為有機磷農藥暴露最關鍵時期,因此,產前有機磷農藥暴露是值得注意的。

Organophosphate pesticides (OPs) are environmental hormones with proven endocrine-disrupting effects that may affect the growth and development in humans. A large amount of organophosphate pesticides (OPs) is used in Taiwan, and humans may be exposed through dietary intake or residential use. During pregnancy, OPs can be transferred into the blood stream, which then reaches the fetus through the placenta.
The aim of our study was to explore the association between maternal OPs exposure levels throughout the gestational period and birth outcomes.
A birth cohort was followed-up. Maternal urine samples were collected at the first, second, and third gestational trimester. Birth outcomes were assessed by pediatricians. Urinary metabolite of organophosphate pesticides were assessed using GC/MS. The analytes included dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphates (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP).
A total of 235 pregnant women was invited to participate in this study. One hundred and six of pregnant women were followed until delivery. In this study, we analyzed 105 pregnant women who had sufficient volume of urine in first, second, and third trimester. The geometric mean (GM) of maternal urinary DMP, DMTP, DMDTP, DEP, DETP, DEDTP, DMs, DEs, and DAPs concentrations (nmol/g creatinine) in the first trimester were 244.50, 167.75, 48.86, 55.19, 137.03, 33.15, 516.08, 245.17, and 801.9, respectively. They were 253.25, 188.42, 55.61, 62.98, 131.74, 37.33, 558.29, 251.86, and 851.10, respectively, in the second trimester. In the third trimester, the concentrations were 265.13, 167.66, 53.90, 65.71, 156.51, 38.17, 569.02, 282.21, and 892.03 respectively. Maternal urinary of OPs metabolites (DEP, DEs) concentrations above the median during the second trimester had an increased risk of decreased neonatal birth height. Pregnant women with higher DEP concentration in the second trimester had the same risk of neonatal birth weight. Birth chest circumference was negatively associated with the DMs concentrations of maternal urinary in the second trimester.
These results indicated that maternal OPs exposure might lower neonatal birth weight, height, and chest circumference, especially in the second trimester. It supported that maternal OPs exposure might affect birth outcomes. From the public health perspective, OPs need to be a concern.

Contents
摘要 I
Abstract III
Contents V
List of tables IV
List of figures VII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 2
1.3 Study framework 3
Chapter 2 Literatures review 4
2.1 The development of organophosphate pesticides use 4
2.2 Characteristics of organophosphate pesticides 6
2.3 Environmental distribution of organophosphate pesticides 7
2.4 Toxicity and metabolism of organophosphate pesticides 8
2.5 Biological monitoring of organophosphate pesticides 9
2.6 Health effects of exposure to organophosphate pesticides 10
2.6.1 Animal studies 10
2.6.2 Epidemioloic studies 11
Chapter 3 Materials and methods 14
3.1 Materials 14
3.1.1 Apparatus 14
3.1.2 Chemicals 14
3.1.3 Instrumentation 15
3.2 Methods 15
3.2.1 Study subjects 15
3.2.2 Urine collection 16
3.2.3 Questionnaire 16
3.2.4 Creatinine determination 17
3.2.5 Determination of urine sample 17
3.2.6 Determination of OP metabolites 19
3.2.7 Neonatal birth outcomes 19
3.3 Method validation 19
3.3.1 Calibration curve 19
3.3.2 Recovery 20
3.3.3 QA/QC 20
3.3.4 Limit of detection (LOD) 20
3.4 Statistical analysis 20
Chapter 4 Results and Discussion 22
4.1 Validation of analytical methods 22
4.2 Socio demographic characteristics, lifestyle and dietary habits of pregnant women 23
4.3 Neonatal birth outcomes and parental factors 24
4.4 Maternal OPs exposure levels 26
4.5 Relationship between prenatal OPs exposure and birth outcomes 28
4.6 Study strengths and limitations 31
4.6.1 Strengths 31
4.6.2 Limitations 31
Chapter 5 Conclusion 33
References 35

List of tables
Table 1. Temperature programming for chromatographic analysis of OPs metabolites 41
Table 2. OPs metabolites retention time, monitored ion, and the limits of detection (LOD) 42
Table 3. Accuracy of analytical method for urinary OPs metabolites 43
Table 4. Demographic characteristics of pregnant women 44
Table 5. The lifestyle of participants during pre-pregnancy, 1st trimester, and 3rd trimester 45
Table 6. The alteration of lifestyle during pregnancy 46
Table 7. The alteration of dietary habits during pregnancy 47
Table 8. General characteristics of newborns 49
Table 9. Spearman’s correlation among parental characteristics and birth outcomes 50
Table 10. Spearman’s correlation among maternal lifestyle and birth outcomes 51
Table 11. Spearman’s correlation among maternal dietary consumption and birth outcomes in the first trimester 52
Table 12. Distributions of urinary OPs metabolites concentrations across the three trimesters (creatinine unadjusted) (nM) 53
Table 13. Comparisons of OPs metabolites levels to previous studies 54
Table 14. Distributions of urinary OPs metabolites concentrations across the three trimesters (creatinine adjusted) (nmol /g creatinine) 55
Table 15. Spearman’s correlation between maternal urinary OPs metabolite DMP concentrations across the three trimesters (creatinine-adjusted) (n=105) 56
Table 16. Spearman’s correlation between maternal urinary OPs metabolite DMTP concentrations across the three trimesters (creatinine-adjusted) (n=105) 56
Table 17. Spearman’s correlation between maternal urinary OPs metabolite DMDTP concentrations across the three trimesters (creatinine-adjusted) (n=105) 56
Table 18. Spearman’s correlation among maternal urinary OPs metabolite DEP concentrations across the three trimesters (creatinine-adjusted) (n=105) 57
Table 19. Spearman’s correlation among maternal urinary OPs metabolite DETP concentrations across the three trimesters (creatinine-adjusted) (n=105) 57
Table 20. Spearman’s correlation among maternal urinary OPs metabolite DEDTP concentrations across the three trimesters (creatinine-adjusted) (n=105) 57
Table 21. Spearman’s correlation among maternal urinary OPs metabolite DMs concentrations across the three trimesters (creatinine-adjusted) (n=105) 58
Table 22. Spearman’s correlation among maternal urinary OPs metabolite DEs concentrations across the three trimesters (creatinine-adjusted) (n=105) 58
Table 23. Spearman’s correlation among maternal urinary OPs metabolite DAPs concentrations across the three trimesters (creatinine-adjusted) (n=105) 58
Table 24. Multivariate linear regression model of birth outcomes and maternal OPs metabolite DMs concentration (nM) in the three trimesters (n=102) 59
Table 25. Multivariate linear regression model of birth outcomes and maternal OPs metabolite DEs concentration (nM) in the three trimesters (n=102) 60
Table 26. Multivariate linear regression model of birth outcomes and maternal OPs metabolite DAPs concentration (nM) in the three trimesters (n=102) (creatinine-unadjusted) 61
Table 27. Multivariate linear regression model of birth outcomes and maternal OPs metabolite DMs concentration (nmol/g cre) in the three trimesters (n=102) (creatinine-adjusted) 62
Table 28. Multivariate linear regression model of birth outcomes and maternal OPs metabolite DEs concentration (nmol/g cre) in the three trimesters ( n=102 ) (creatinine-adjusted) 63
Table 29. Multivariate linear regression model of birth outcomes and maternal OPs metabolite DAPs concentration (nmol/g cre) in the three trimesters (n=102) (creatinine-adjusted) 64
Table 30. Multivariate logistic regression model of birth outcomes and maternal OPs metabolite DMs concentration (nM) in the three trimesters (n=102) (creatinine-unadjusted) 65
Table 31. Multivariate logistic regression model of birth outcomes and maternal OPs metabolite DEs concentration (nM) in the three trimesters (n=102) (creatinine-unadjusted) 67
Table 32. Multivariate logistic regression model of birth outcomes and maternal OPs metabolite DAPs concentration (nM) in the three trimesters (n=102) (creatinine-unadjusted) 69
Table 33. Multivariate logistic regression model of birth outcomes and maternal OPs metabolite DMs concentration (nmol/g cre) in the three trimesters (n=102) (creatinine-adjusted) 71
Table 34. Multivariate logistic regression model of birth outcomes and maternal OPs metabolite DEs concentration (nmol/g cre) in the three trimesters (n=102) (creatinine-adjusted) 73
Table 35. Multivariate logistic regression model of birth outcomes and maternal OPs metabolite DAPs concentration (nmol/g cre) in the three trimesters (n=102) (creatinine-adjusted) 75
Table 36. Organophosphate pesticides and their potential dialkyl phosphate metabolites [13] 77

List of figures
Figure 1. Chemical structure of OPs [20] 78
Figure 2. Structural formulas of OPs pesticides used in Taiwan 79
Figure 3. Chemical structures of dialkylphosphate urinary metabolites of OPs 80
Figure 4. Calibration curves of OPs metabolites 81
Figure 5. Chromatogram of DMP, DEP, DMTP, DMDTP, DETP, DEDTP (2g/mL); DBP (500 ng/mL) 83


References
1. Zhang, Y., et al., Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: a birth cohort study in Shenyang, China. PLoS One, 2014. 9(2): p. e88491.
2. Sultatos, L.G., Mammalian toxicology of organophosphorus pesticides. J Toxicol Environ Health, 1994. 43(3): p. 271-89.
3. Aldridge, J.E., et al., Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect, 2005. 113(8): p. 1027-31.
4. Venerosi, A., et al., Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups. Environ Health, 2009. 8: p. 12.
5. Lazarini, C.A., et al., Prenatal exposure to dichlorvos: physical and behavioral effects on rat offspring. Neurotoxicol Teratol, 2004. 26(4): p. 607-14.
6. Qiao, D., et al., Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ Health Perspect, 2003. 111(4): p. 536-44.
7. Rauch, S.A., et al., Associations of prenatal exposure to organophosphate pesticide metabolites with gestational age and birth weight. Environ Health Perspect, 2012. 120(7): p. 1055-60.
8. Eskenazi, B., et al., Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect, 2004. 112(10): p. 1116-24.
9. Wang, P., et al., Organophosphate pesticide exposure and perinatal outcomes in Shanghai, China. Environ Int, 2012. 42: p. 100-4.
10. Wolff, M.S., et al., Prenatal pesticide and PCB exposures and birth outcomes. Pediatr Res, 2007. 61(2): p. 243-50.
11. Wise, P.H., et al., Racial and socioeconomic disparities in childhood mortality in Boston. N Engl J Med, 1985. 313(6): p. 360-6.
12. Bouchard, M.F., et al., Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics, 2010. 125(6): p. e1270-7.
13. Bravo, R., et al., Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. J Expo Anal Environ Epidemiol, 2004. 14(3): p. 249-59.
14. Lacasana, M., et al., Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers. Toxicol Appl Pharmacol, 2010. 243(1): p. 19-26.
15. Ye, X., et al., Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands: the Generation R study. Environ Res, 2008. 108(2): p. 260-7.
16. 農藥毒性研討會論文專集. 1985: 中研院動物研究所.
17. Gonzalez-Alzaga, B., et al., A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett, 2014. 230(2): p. 104-21.
18. 行政院農業委員會動植物防疫檢疫局., 農藥資訊服務網. 2010.
19. 行政院國家永續發展委員會., 永續發展指標系統評量結果. 2011.
20. Cocker, J., et al., Biological monitoring of exposure to organophosphate pesticides. Toxicol Lett, 2002. 134(1-3): p. 97-103.
21. Tsatsakis, A.M., et al., Clinical and toxicological data in fenthion and omethoate acute poisoning. J Environ Sci Health B, 1998. 33(6): p. 657-70.
22. Barr, D.B., et al., Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the U.S. population. Environ Health Perspect, 2004. 112(2): p. 186-200.
23. Bertsias, G.K., et al., Review of clinical and toxicological features of acute pesticide poisonings in Crete (Greece) during the period 1991-2001. Med Sci Monit, 2004. 10(11): p. CR622-7.
24. Kavvalakis, M.P. and A.M. Tsatsakis, The atlas of dialkylphosphates; assessment of cumulative human organophosphorus pesticides' exposure. Forensic Sci Int, 2012. 218(1-3): p. 111-22.
25. Kupfermann, N., A. Schmoldt, and H. Steinhart, Rapid and sensitive quantitative analysis of alkyl phosphates in urine after organophosphate poisoning. J Anal Toxicol, 2004. 28(4): p. 242-8.
26. Xiao, Z., et al., Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. Talanta, 2016. 156-157: p. 126-33.
27. Nesser, G.A., et al., Levels of pesticides residues in the White Nile water in the Sudan. Environ Monit Assess, 2016. 188(6): p. 374.
28. Ccanccapa, A., et al., Spatio-temporal patterns of pesticide residues in the Turia and Jucar Rivers (Spain). Sci Total Environ, 2016. 540: p. 200-10.
29. Morgan, M.K., N.K. Wilson, and J.C. Chuang, Exposures of 129 preschool children to organochlorines, organophosphates, pyrethroids, and acid herbicides at their homes and daycares in North Carolina. Int J Environ Res Public Health, 2014. 11(4): p. 3743-64.
30. Harnpicharnchai, K., N. Chaiear, and L. Charerntanyarak, Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand. Southeast Asian J Trop Med Public Health, 2013. 44(6): p. 1088-97.
31. 衛生福利部食品藥物管理署, 103年度市售及包裝場農產品殘留農藥監測結果. 2014.
32. 郭曉文, 陳., 施鈞傑, 楊凱智, 王怡中, 周秀冠, 鄭守訓, 徐錦豐,蘇淑珠, 楊舒秦, 張嘉玲, 胡智強, 陳世宗, 盧敏琪, 蔣青蓉, 何淑青, 陳美娟, 黃月鳳, 施養志, 市售農產品殘留農藥監測. 食品藥物研究年報, 2010. 1: p.: 23-40.
33. Dolapsakis, G., et al., Mammographic findings and occupational exposure to pesticides currently in use on Crete. Eur J Cancer, 2001. 37(12): p. 1531-6.
34. Sarabia, L., I. Maurer, and E. Bustos-Obregon, Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on the mouse testis. Ecotoxicol Environ Saf, 2009. 72(3): p. 938-42.
35. Giordano, G., et al., Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol, 2007. 219(2-3): p. 181-9.
36. Cakir S, S.R., Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2005. 43(2-3): p. 181-189.
37. Kang HG, J.S., Cho JH, Kim DG, Park JM, Cho MH, Chlropyrifos-methyl shows anti- androgenic activity without estrogenic activity in rats. Toxicology, 2004. 199(2-3): p. 219-230.
38. Yeh S-P, S.T.-G., Chang C-C, Cheng W, Kuo C-M, Eeffects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture, 2005. 243(1): p. 383-392.
39. Barr, D.B., et al., Strategies for biological monitoring of exposure for contemporary-use pesticides. Toxicol Ind Health, 1999. 15(1-2): p. 168-79.
40. Duggan, A., et al., Di-alkyl phosphate biomonitoring data: assessing cumulative exposure to organophosphate pesticides. Regul Toxicol Pharmacol, 2003. 37(3): p. 382-95.
41. Berman, T., et al., Urinary concentrations of organophosphate pesticide metabolites in adults in Israel: demographic and dietary predictors. Environ Int, 2013. 60: p. 183-9.
42. Roca, M., et al., Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Environ Res, 2014. 131: p. 77-85.
43. Bradway, D.E. and T.M. Shafik, Malathion exposure studies. Determination of mono- and dicarboxylic acids and alkyl phosphates in urine. J Agric Food Chem, 1977. 25(6): p. 1342-4.
44. Barr, D.B., et al., Urinary concentrations of dialkylphosphate metabolites of organophosphorus pesticides: National Health and Nutrition Examination Survey 1999-2004. Int J Environ Res Public Health, 2011. 8(8): p. 3063-98.
45. Aguilar-Garduno, C., et al., Changes in male hormone profile after occupational organophosphate exposure. A longitudinal study. Toxicology, 2013. 307: p. 55-65.
46. Bouchard, M.F., et al., Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect, 2011. 119(8): p. 1189-95.
47. Engel, S.M., et al., Prenatal Organophosphorus Pesticide Exposure and Child Neurodevelopment at 24 Months: An Analysis of Four Birth Cohorts. Environ Health Perspect, 2016. 124(6): p. 822-30.
48. Tian, Y. and T. Yamauchi, Micronucleus formation in 3-day mouse embryos associated with maternal exposure to chlorpyrifos during the early preimplantation period. Reprod Toxicol, 2003. 17(4): p. 401-5.
49. Tian, Y., et al., The effects of trichlorfon on maternal reproduction and mouse embryo development during organogenesis. Ind Health, 2009. 47(3): p. 313-8.
50. Srivastava, M.K. and R.B. Raizada, Development effect of technical dimethoate in rats: maternal and fetal toxicity evaluation. Indian J Exp Biol, 1996. 34(4): p. 329-33.
51. Oulhote, Y. and M.F. Bouchard, Urinary metabolites of organophosphate and pyrethroid pesticides and behavioral problems in Canadian children. Environ Health Perspect, 2013. 121(11-12): p. 1378-84.
52. Spaan, S., et al., Reliability of concentrations of organophosphate pesticide metabolites in serial urine specimens from pregnancy in the Generation R Study. J Expo Sci Environ Epidemiol, 2015. 25(3): p. 286-94.
53. Whyatt, R.M., et al., Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect, 2004. 112(10): p. 1125-32.
54. Lee, S., et al., Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats. Chem Biol Interact, 2010. 184(3): p. 449-57.
55. Chuang, Y.C. and K.Y. Chuang, Gender differences in relationships between social capital and individual smoking and drinking behavior in Taiwan. Soc Sci Med, 2008. 67(8): p. 1321-30.
56. Bradman, A., et al., Determinants of organophosphorus pesticide urinary metabolite levels in young children living in an agricultural community. Int J Environ Res Public Health, 2011. 8(4): p. 1061-83.
57. Perera, F.P., et al., Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect, 2003. 111(2): p. 201-5.
58. Romo, A., R. Carceller, and J. Tobajas, Intrauterine growth retardation (IUGR): epidemiology and etiology. Pediatr Endocrinol Rev, 2009. 6 Suppl 3: p. 332-6.
59. Weissgerber, T.L. and L.A. Wolfe, Physiological adaptation in early human pregnancy: adaptation to balance maternal-fetal demands. Appl Physiol Nutr Metab, 2006. 31(1): p. 1-11.
60. Torgersen, K.L. and C.A. Curran, A systematic approach to the physiologic adaptations of pregnancy. Crit Care Nurs Q, 2006. 29(1): p. 2-19.
61. Saunders, M., et al., Chlorpyrifos and neurodevelopmental effects: a literature review and expert elicitation on research and policy. Environ Health, 2012. 11 Suppl 1: p. S5.
62. Whyatt, R.M., et al., Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ Health Perspect, 2003. 111(5): p. 749-56.
63. Bellinger, D.C., Prenatal Exposures to Environmental Chemicals and Children's Neurodevelopment: An Update. Saf Health Work, 2013. 4(1): p. 1-11.
64. Yolton, K., et al., Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol, 2011. 33(5): p. 558-66.
65. Suzuki, Y., et al., Prenatal exposure to phthalate esters and PAHs and birth outcomes. Environ Int, 2010. 36(7): p. 699-704.
66. Wolff, M.S., et al., Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect, 2008. 116(8): p. 1092-7.
67. Eskenazi, B., et al., Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect, 2007. 115(5): p. 792-8.
68. Ye, X., et al., Levels of metabolites of organophosphate pesticides, phthalates, and bisphenol A in pooled urine specimens from pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Int J Hyg Environ Health, 2009. 212(5): p. 481-91.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔